Spelling suggestions: "subject:"poincare inequality"" "subject:"poincaré inequality""
1 |
Ricci solitons and geometric analysisWink, Matthias January 2018 (has links)
This thesis studies Ricci solitons of cohomogeneity one and uniform Poincaré inequalities for differentials on Riemann surfaces. In the two summands case, which assumes that the isotropy representation of the principal orbit consists of two inequivalent Ad-invariant irreducible summands, complete steady and expanding Ricci solitons have been detected numerically by Buzano-Dancer-Gallaugher-Wang. This work provides a rigorous construction thereof. A Lyapunov function is introduced to prove that the Ricci soliton metrics lie in a bounded region of an associated phase space. This also gives an alternative construction of non-compact Einstein metrics of non-positive scalar curvature due to Böhm. It is explained how the asymptotics of the Ricci flat trajectories induce Böhm's Einstein metrics on spheres and other low dimensional spaces. A numerical study suggests that all other Einstein metrics of positive scalar curvature which are induced by the generalised Hopf fibrations occur in an entirely non-linear regime of the Einstein equations. Extending the theory of cohomogeneity one steady and expanding Ricci solitons, an estimate which allows to prescribe the growth rate of the soliton potential at any given time is shown. As an application, continuous families of Ricci solitons on complex line bundles over products of Fano Kähler Einstein manifolds are constructed. This generalises work of Appleton and Stolarski. The method also applies to the Lü-Page-Pope set-up and allows to cover an optimal parameter range in the two summands case. The Ricci soliton equation on manifolds foliated by torus bundles over products of Fano Kähler Einstein manifolds is discussed. A rigidity theorem is obtained and a preserved curvature condition is discovered. The cohomogeneity one initial value problem is solved for m-quasi-Einstein metrics and complete metrics are described. L<sup>p</sup>-Poincaré inequalities for k-differentials on closed Riemann surfaces are shown. The estimates are uniform in the sense that the Poincaré constant only depends on p &GE;1, k ≥ 2 and the genus γ ≥ 2 of the surface but not on its complex structure. Examples show that the analogous estimate for 1-differentials cannot be uniform. This part is based on joint work with Melanie Rupflin.
|
2 |
De Rham Theory and Semialgebraic GeometryShartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets.
The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of
bounded size (in the metric induced from Rn).
We identify the singular homology of X as the homology of the chain complex generated
by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the
standard simplex into X. Singular cohomology of X is defined as the homology of the
Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham
type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms.
The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a
deformation retraction is the key to the results of the first and the third topics.
The third topic is related to Poincare inequality on a semialgebraic set. We study
Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn
for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set.
The final topic is in the appendix. It deals with an explicit proof of Poincare type
inequality for differential forms on compact manifolds. We prove the latter inequality by
means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.
|
3 |
De Rham Theory and Semialgebraic GeometryShartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets.
The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of
bounded size (in the metric induced from Rn).
We identify the singular homology of X as the homology of the chain complex generated
by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the
standard simplex into X. Singular cohomology of X is defined as the homology of the
Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham
type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms.
The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a
deformation retraction is the key to the results of the first and the third topics.
The third topic is related to Poincare inequality on a semialgebraic set. We study
Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn
for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set.
The final topic is in the appendix. It deals with an explicit proof of Poincare type
inequality for differential forms on compact manifolds. We prove the latter inequality by
means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.
|
4 |
Discrete Approximations of Metric Measure Spaces with Controlled GeometryLopez, Marcos D. 19 October 2015 (has links)
No description available.
|
5 |
Preservation of bounded geometry under transformations metric spacesLi, Xining 19 October 2015 (has links)
No description available.
|
6 |
Synthetic notions of curvature and applications in graph theoryShiping, Liu 11 January 2013 (has links) (PDF)
The interaction between the study of geometric and analytic aspects of Riemannian manifolds and that of graphs is a very amazing subject. The study of synthetic curvature notions on graphs adds new contributions to this topic. In this thesis, we mainly study two kinds of synthetic curvature notions: the Ollivier-Ricci cuvature on locally finite graphs and the combinatorial curvature on infinite semiplanar graphs.
In the first part, we study the Ollivier-Ricci curvature. As known in Riemannian geometry, a lower Ricci curvature bound prevents geodesics from diverging too fast on average. We translate this Riemannian idea into a combinatorial setting using the Olliver-Ricci curvature notion. Note that on a graph, the analogue of geodesics starting in different directions, but eventually approaching each other again, would be a triangle. We derive lower and upper Ollivier-Ricci curvature bounds on graphs in terms of number of triangles, which is sharp for instance for complete graphs. We then describe the relation between Ollivier-Ricci curvature and the local clustering coefficient, which is an important concept in network analysis introduced by Watts-Strogatz.
Furthermore, positive lower boundedness of Ollivier-Ricci curvature for neighboring vertices imply the existence of at least one triangle. It turns out that the existence of triangles can also improve Lin-Yau\'s curvature dimension inequality on graphs and then produce an implication from Ollivier-Ricci curvature lower boundedness to the curvature dimension inequality.
The existence of triangles prevents a graph from being bipartite. A finite graph is bipartite if and only if its largest eigenvalue equals 2. Therefore it is natural that Ollivier-Ricci curvature is closely related to the largest eigenvalue estimates. We combine Ollivier-Ricci curvature notion with the neighborhood graph method developed by Bauer-Jost to study the spectrum estimates of a finite graph. We can always obtain nontrivial estimates on a non-bipartite graph even if its curvature is nonpositive. This answers one of Ollivier\'s open problem in the finite graph setting.
In the second part of this thesis, we study systematically infinite semiplanar graphs with nonnegative combinatorial curvature. Unlike the previous Gauss-Bonnet formula approach, we explore an Alexandrov approach based on the observation that the nonnegative combinatorial curvature on a semiplanar graph is equivalent to nonnegative Alexandrov curvature on the surface obtained by replacing each face by a regular polygon of side length one with the same facial degree and gluing the polygons along common edges.
Applying Cheeger-Gromoll splitting theorem on the surface, we give a metric classification of infinite semiplanar graphs with nonnegative curvature. We also construct the graphs embedded into the projective plane minus one point. Those constructions answer a question proposed by Chen.
We further prove the volume doubling property and Poincare inequality which make the running of Nash-Moser iteration possible. We in particular explore the volume growth behavior on Archimedean tilings on a plane and prove that they satisfy a weak version of relative volume comparison with constant 1.
With the above two basic inequalities in hand, we study the geometric function theory of infinite semiplanar graphs with nonnegative curvature. We obtain the Liouville type theorem for positive harmonic functions, the parabolicity. We also prove a dimension estimate for polynomial growth harmonic functions, which is an extension of the solution of Colding-Minicozzi of a conjecture of Yau in Riemannian geometry.
|
7 |
Synthetic notions of curvature and applications in graph theoryShiping, Liu 20 December 2012 (has links)
The interaction between the study of geometric and analytic aspects of Riemannian manifolds and that of graphs is a very amazing subject. The study of synthetic curvature notions on graphs adds new contributions to this topic. In this thesis, we mainly study two kinds of synthetic curvature notions: the Ollivier-Ricci cuvature on locally finite graphs and the combinatorial curvature on infinite semiplanar graphs.
In the first part, we study the Ollivier-Ricci curvature. As known in Riemannian geometry, a lower Ricci curvature bound prevents geodesics from diverging too fast on average. We translate this Riemannian idea into a combinatorial setting using the Olliver-Ricci curvature notion. Note that on a graph, the analogue of geodesics starting in different directions, but eventually approaching each other again, would be a triangle. We derive lower and upper Ollivier-Ricci curvature bounds on graphs in terms of number of triangles, which is sharp for instance for complete graphs. We then describe the relation between Ollivier-Ricci curvature and the local clustering coefficient, which is an important concept in network analysis introduced by Watts-Strogatz.
Furthermore, positive lower boundedness of Ollivier-Ricci curvature for neighboring vertices imply the existence of at least one triangle. It turns out that the existence of triangles can also improve Lin-Yau\''s curvature dimension inequality on graphs and then produce an implication from Ollivier-Ricci curvature lower boundedness to the curvature dimension inequality.
The existence of triangles prevents a graph from being bipartite. A finite graph is bipartite if and only if its largest eigenvalue equals 2. Therefore it is natural that Ollivier-Ricci curvature is closely related to the largest eigenvalue estimates. We combine Ollivier-Ricci curvature notion with the neighborhood graph method developed by Bauer-Jost to study the spectrum estimates of a finite graph. We can always obtain nontrivial estimates on a non-bipartite graph even if its curvature is nonpositive. This answers one of Ollivier\''s open problem in the finite graph setting.
In the second part of this thesis, we study systematically infinite semiplanar graphs with nonnegative combinatorial curvature. Unlike the previous Gauss-Bonnet formula approach, we explore an Alexandrov approach based on the observation that the nonnegative combinatorial curvature on a semiplanar graph is equivalent to nonnegative Alexandrov curvature on the surface obtained by replacing each face by a regular polygon of side length one with the same facial degree and gluing the polygons along common edges.
Applying Cheeger-Gromoll splitting theorem on the surface, we give a metric classification of infinite semiplanar graphs with nonnegative curvature. We also construct the graphs embedded into the projective plane minus one point. Those constructions answer a question proposed by Chen.
We further prove the volume doubling property and Poincare inequality which make the running of Nash-Moser iteration possible. We in particular explore the volume growth behavior on Archimedean tilings on a plane and prove that they satisfy a weak version of relative volume comparison with constant 1.
With the above two basic inequalities in hand, we study the geometric function theory of infinite semiplanar graphs with nonnegative curvature. We obtain the Liouville type theorem for positive harmonic functions, the parabolicity. We also prove a dimension estimate for polynomial growth harmonic functions, which is an extension of the solution of Colding-Minicozzi of a conjecture of Yau in Riemannian geometry.
|
Page generated in 0.0882 seconds