Spelling suggestions: "subject:"transformées dde riesz"" "subject:"transformées dde niesz""
1 |
Weighted LP estimates on Riemannian manifolds / Estimations LP à poids sur des variétés riemanniennesDahmani, Kamilia 07 December 2018 (has links)
Cette thèse s'inscrit dans le domaine de l'analyse harmonique et plus exactement, des estimations à poids. Un intérêt particulier est porté aux estimations Lp à poids des transformées de Riesz sur des variétés Riemanniennes complètes ainsi qu'à l'optimalité des résultats en terme de la puissance de la caractéristique des poids. On obtient un premier résultat (en terme de la linéarité et de la non dépendance de la dimension) sur des espaces pas nécessairement de type homogène, lorsque p = 2 et la courbure de Bakry-Emery est positive. On utilise pour cela une approche analytique en exhibant une fonction de Bellman concrète. Puis, en utilisant des techniques stochastiques et une domination éparse, on démontre que les transformées de Riesz sont bornées sur Lp, pour p ∈ (1, +∞) et on déduit également le résultat précèdent. Enfin, on utilise un changement élégant dans la preuve précèdente pour affaiblir l'hypothèse sur la courbure et la supposer minorée. / The topics addressed in this thesis lie in the field of harmonic analysis and more pre- cisely, weighted inequalities. Our main interests are the weighted Lp-bounds of the Riesz transforms on complete Riemannian manifolds and the sharpness of the bounds in terms of the power of the characteristic of the weights. We first obtain a linear and dimensionless result on non necessarily homogeneous spaces, when p = 2 and the Bakry-Emery curvature is non-negative. We use here an analytical approach by exhibiting a concrete Bellman function. Next, using stochastic techniques and sparse domination, we prove that the Riesz transforms are Lp-bounded for p ∈ (1, +∞) and obtain the previous result for free. Finally, we use an elegant change in the precedent proof to weaken the condition on the curvature and assume it is bounded from below.
|
2 |
Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleurChen, Li 24 April 2014 (has links) (PDF)
Dans cette thèse nous étudions les transformées de Riesz et les espaces de Hardy associés à un opérateur sur un espace métrique mesuré. Ces deux sujets sont en lien avec des estimations du noyau de la chaleur associé à cet opérateur. Dans les Chapitres 1, 2 et 4, on étudie les transformées quasi de Riesz sur les variétés riemannienne et sur les graphes. Dans le Chapitre 1, on prouve que les quasi transformées de Riesz sont bornées dans Lp pour 1
|
3 |
Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur / Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimatesChen, Li 24 April 2014 (has links)
Dans cette thèse nous étudions les transformées de Riesz et les espaces de Hardy associés à un opérateur sur un espace métrique mesuré. Ces deux sujets sont en lien avec des estimations du noyau de la chaleur associé à cet opérateur. Dans les Chapitres 1, 2 et 4, on étudie les transformées quasi de Riesz sur les variétés riemannienne et sur les graphes. Dans le Chapitre 1, on prouve que les quasi transformées de Riesz sont bornées dans Lp pour 1<p<2. Dans le Chapitre 2, on montre que les quasi transformées de Riesz est aussi de type faible (1,1) si la variété satisfait la propriété de doublement du volume et l'estimation sous-gaussienne du noyau de la chaleur. On obtient des résultats analogues sur les graphes dans le Chapitre 4. Dans le Chapitre 3, on développe la théorie des espaces de Hardy sur les espaces métriques mesurés avec des estimations différentes localement et globalement du noyau de la chaleur. On définit les espaces de Hardy par les molécules et par les fonctions quadratiques. On montre tout d'abord que ces deux espaces H1 sont les mêmes. Puis, on compare l'espace Hp défini par par les fonctions quadratiques et Lp. On montre qu'ils sont équivalents. Mais on trouve des exemples tels que l'équivalence entre Lp et Hp défini par les fonctions quadratiques avec l'homogénéité t2 n'est pas vraie. Finalement, comme application, on montre que les quasi transformées de Riesz sont bornées de H1 dans L1 sur les variétés fractales. Dans le Chapitre 5, on prouve des inégalités généralisées de Poincaré et de Sobolev sur les graphes de Vicsek. On montre aussi qu'elles sont optimales. / In this thesis, we mainly study Riesz transforms and Hardy spaces associated to operators. The two subjects are closely related to volume growth and heat kernel estimates. In Chapter 1, 2 and 4, we study Riesz transforms on Riemannian manifold and on graphs. In Chapter 1, we prove that on a complete Riemannian manifold, the quasi Riesz transform is always Lp bounded on for p strictly large than 1 and no less than 2. In Chapter 2, we prove that the quasi Riesz transform is also weak L1 bounded if the manifold satisfies the doubling volume property and the sub-Gaussian heat kernel estimate. Similarly, we show in Chapter 4 the same results on graphs. In Chapter 3, we develop a Hardy space theory on metric measure spaces satisfying the doubling volume property and different local and global heat kernel estimates. Firstly we define Hardy spaces via molecules and via square functions which are adapted to the heat kernel estimates. Then we show that the two H1 spaces via molecules and via square functions are the same. Also, we compare the Hp space defined via square functions with Lp. The corresponding Hp space for p large than 1 defined via square functions is equivalent to the Lebesgue space Lp. However, it is shown that in this situation, the Hp space corresponding to Gaussian estimates does not coincide with Lp any more. Finally, as an application of this Hardy space theory, we proved that quasi Riesz transforms are bounded from H1 to L1 on fractal manifolds. In Chapter 5, we consider Vicsek graphs. We prove generalised Poincaré inequalities and Sobolev inequalities on Vicsek graphs and we show that they are optimal.
|
4 |
Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham / Boundedness of the Riesz transforms on Lp via the Hodge-de Rham LaplacianMagniez, Jocelyn 06 November 2015 (has links)
Cette thèse comporte deux sujets d’étude mêlés. Le premier concerne l’étude de la bornitude sur Lp de la transformée de Riesz d∆-½ , où ∆ désigne l’opérateur de Laplace-Beltrami (positif). Le second traite de la régularité de Sobolev W1,p de la solution de l’équation de la chaleur non perturbée. Nous établissons également quelques résultats concernant les transformées de Riesz d’opérateurs de Schrödinger avec un potentiel comportant éventuellement une partie négative.Dans le cadre de ces travaux, nous nous plaçons sur une variété riemanienne (M, g) complète et non compacte. Nous supposons que M satisfait la propriété de doublement de volume (de constante de doublement égale à D) ainsi qu’une estimation gaussienne supérieure pour son noyau de la chaleur (celui associé à l’opérateur ∆). Nous travaillons avec le laplacien de Hodge-de Rham, noté ∆, agissant sur les 1-formes différentielles de M. En s’appuyant sur la formule de Bochner, liant ∆ à la courbure de Ricci de M, nous assimilons ∆ à un opérateur de Schrödinger à valeurs vectorielles. C’est un argument de dualité, basé sur une formule de commutation algébrique, qui lie l’étude de ∆ à celle de ∆. [...] / This thesis has two main parts. The first one deals with the study of the boundedness on Lp of the Riesz transform d∆-½ , where ∆ denotes the nonnegative Laplace-Beltrami operator. The second one deals with the Sobolev regularity W1,p of the solution of the heat equation. We also establish some results on the Riesz transforms of Schrödinger operators with a potential possibly having a negative part. In this work, we consider a complete non-compact Riemannian manifold (M, g). We assume that M satisfies the volume doubling property (with doubling constant equal to D) as well as a Gaussian upper estimate for its heat kernel associated to the operator ∆. We work with the Hodge-de Rham Laplacian ∆, acting on 1-differential forms of M. With the Bochner formula, linking ∆to the Ricci curvature of M, we see ∆ has a vector-valued Schrödinger operator. It is a duality argument, based on a commutation formula, which links the study of ∆to the one of ∆. [...]
|
5 |
Transformées de Riesz associées aux opérateurs de Schrödinger avec des potentiels négatifsAssaad, Joyce 29 November 2010 (has links)
Dans cette thèse nous étudions la bornitude des transformées de Riesz associées aux opérateurs de Schrödinger avec des potentiels qui admettent des parties négatives.Cette étude a lieu dans un premier temps sur les espaces de Lebesgue Lp(RN, dx), puissur les espaces Lp(M, dx) où M est une variété Riemannienne de type homogène et dans un dernier temps sur les espaces à poids Lp(RN,wdx). Nous considérons également,sur ces espaces à poids, la bornitude du calcul fonctionnel holomorphe associé et la bornitude des puissances négatives de l’opérateur de Schrödinger. / In this thesis we study the boundedness of Riesz transforms associated to Schrödinger operators with potentials having negative parts. First we consider the boundednesson Lp(RN, dx), then on Lp(M, dx) where M is a Riemannian manifold of homogeneous type. Finally we treat the boundedness of Riesz transforms on Lp(RN,wdx). As we consider, on the weighted spaces, the boundedness of the associated holomorphicfunctional calculus and the boundedness of the negative powers of the Schrödinger operator.
|
Page generated in 0.0762 seconds