1 |
Lubrication mechanisms and their influence on interface strength during installation of subsurface pipesMcGillivray, Catherine Black 13 November 2009 (has links)
Pipe jacking, has seen a rise in popularity, particularly in urban areas where infrastructure does not permit cut-and-cover methods. As pipe jacking has becomes more commonplace, engineers are pushing the limits of the technology more and more by designing longer drives in more difficult ground conditions. Lubrication is essential to reduce the frictional resistance generated at the pipe-soil interface. Even though lubrication is widely utilized, there is not a clear understanding of the conditions required to obtain the full benefit of lubrication. This dissertation focuses on bentonite slurry characteristics and interface behavior under different lubricating conditions with the goal to further the understanding of the mechanisms responsible for the large friction reductions observed in the field.
An interface shear device capable of measuring interface behavior on pipe surfaces was used to perform tests under two lubricating conditions. Pipes were sheared against a mixture of sand and slurry and the effect of the slurry was quantified. In another series of tests, slurry was injected at the pipe-soil interface. An axisymmetric interface shear device was developed to further investigate the lubrication mechanism associated with injection of slurry into sand. The device was designed to inject slurry through injection ports built into a shaft displaced within a sealed sand-filled chamber. A series of tests were performed on dry sand as well as sand where water or slurry was injected during shearing. The effect of sand type and viscosity are also investigated.
Findings from the experimental studies are related back to full-scale behavior with the objective of assessing the lubrication methods and their effectiveness. A rational procedure for predicting non-lubricated and lubricated jacking forces is proposed to optimize design and serve as a framework for evaluating jacking forces in the field.
|
2 |
Lubrication mechanisms and their influence on interface strength during installation of subsurface pipesMcGillivray, Catherine Black. January 2009 (has links)
Thesis (Ph.D)--Geosystems, Georgia Institute of Technology, 2010. / Committee Chair: Frost, J. David; Committee Member: Burns, Susan E.; Committee Member: Gokhale, Arun; Committee Member: Mayne, Paul W.; Committee Member: Rix, Glenn J. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
3 |
Beneficial Reuse of Corrugated Paperboard in Civil Engineering ApplicationsStone, Gregory M 01 March 2012 (has links) (PDF)
Abstract
Beneficial Reuse of Corrugated Paperboard in Civil Engineering Applications
Gregory Michael Stone
An investigation was conducted to explore the potential for reuse of corrugated paperboard. Corrugated paperboard represents a large fraction of the municipal solid waste generated and discarded in the United States. Alternative applications for reuse can provide a significant benefit by reducing the volume of waste being disposed and by reducing the use of raw materials. Four civil engineering applications were examined for potential beneficial reuse of corrugated paperboard: slurry trench construction, vertical drilling, directional drilling, and controlled low strength materials (CLSM).
For the purpose of this project, corrugated paperboard was pulped and added to bentonite slurry or CLSM mixtures. Bentonite slurry mixtures were tested for viscosity, density, filtrate loss, and permeability. The behavior of the bentonite slurries was greatly influenced by interaction and interlocking of corrugate fibers; in general resulting in increased viscosity, filtrate loss, and permeability and decreased density. CLSM mixtures were tested for flow consistency, unit weight, air content, and compressive strength. CLSM mixtures prepared with corrugated paperboard showed an increased water demand due to high absorption of the corrugate. The higher water content was a significant factor contributing to decreased unit weight and compressive strength. CLSM mixtures containing corrugated paperboard also exhibited increased air contents, possibly due to entrapment of air within the corrugate pulp.
Corrugated paperboard was used to successfully replace up to 27% of bentonite for slurry trench applications, 60% of bentonite for vertical drilling applications, and 59% of bentonite for directional drilling applications while maintaining acceptable engineering properties. For CLSM mixtures up to 1% of fine aggregate was replaced with corrugated paperboard while maintaining satisfactory engineering properties.
Incorporation of corrugated paper board into bentonite slurry, CLSM, and drilling fluid applications provides a viable option for beneficial reuse.
|
Page generated in 0.078 seconds