• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese de complexos benzenotricarboxilatos de terras raras e estudo de suas propriedades fotoluminescentes / Synthesis of rare earths benzenetricarboxylate complexes and study of their photoluminescent properties

Souza, Ernesto Rezende 11 June 2008 (has links)
O presente trabalho aborda a síntese e caracterização de complexos benzenotricarboxilatos de íons Eu3+, Gd3+ e Tb3+, com o intuito de investigar suas características químicas e estruturais e correlacioná-las com as propriedades fotoluminescentes. Os complexos benzenotricarboxilato [TR(BTC)(H2O)n] foram sintetizados em solução aquosa, e apresentaram-se na forma de pós brancos, não-higroscópicos e insolúveis em solventes polares ou apolares. Os complexos com o ligante EMA se mostraram isomórficos e com grau de hidratação igual a dois. Os complexos com o ligante TLA também apresentaram isomorfismo, mas com estrutura cristalina diferente da dos complexos com os outros ligantes. Os complexos [Eu(TMA)(H2O)6] e [Gd(TMA)(H2O)6] apresentaram a mesma estrutura cristalina; entretanto, o complexo [Tb(TMA)] se mostrou anidro, o que foi confirmado pela termoanálise. Os espectros de absorção na região do invravermelho dos complexos evidenciaram que os ligantes BTC3- se coordenam aos íons TR3+ através dos grupos carboxilato desprotonados. Os espectros de fosforescência dos complexos [Gd(BTC)(H2O)n] exibem uma banda larga característica da emissão de cor azul dos ligantes BTC3- (c.a. 450 nm); as medidas das energias dos estados tripleto T1 dos ligantes mostraram que as energias dos estados variam de 25100 a 25700 cm-1, energia que é superior às dos níveis emissores 5D0 e 5D4 dos íons Eu3+ e Tb3+, respectivamente. A eficiente transferência de energia ligante-TR3+ (TR3+ = Eu3+ e Tb3+) nos complexos é comprovada pelos seus espectros de excitação (a banda de excitação do ligante apresenta alta intensidade, com máximo em c.a. 295 nm) e de emissão (não apresentam a banda de fosforescência do ligante, mas sim as transições características dos íons TR3+). Os espectros de emissão dos complexos [Tb(BTC)(H2O)n] evidenciaram a intensa luminescência de cor verde destes complexos, especialmente do complexo anidro [Tb(TMA)], que apresenta a grande vantagem de não sofrer supressão de luminescência causada pelos níveis vibracionais intermediários da água. Os espectros de luminescência dos complexos [Eu(BTC)(H2O)n] apresentam bandas desdobradas em picos finos bem definidos, o que significa que os íons Eu3+ nos complexos se encontram em sítios de simetria bem definida, corroborando o caráter cristalino indicados pelos difratogramas de raios X. Dentre os complexos [TR(BTC)(H2O)n], os maiores tempos de vida dos estados emissores correspondem aos estados T1 dos ligantes BTC3- nos complexos com o íon Gd3+ (entre 7,386 e 12,025 ms), seguidos pelo nível 5D4 do íon Tb3+ (entre 0,712 e 1,265) e por fim pelo nível 5D0 do íon Eu3+ (entre 0,253 e 0,630). Os complexos [Eu(BTC)(H2O)n] ainda apresentaram valores de eficiência quântica entre 12 e 24% Este valor decresce com o aumento do número de moléculas de água do sistema, evidenciando o seu caráter supressor de luminescência. Os complexos [TR(BTC)(H2O)n] mostram-se promissores para serem aplicados como marcadores ópticos, camadas emissoras em dispositivos eletroluminescentes e no desenvolvimento de fluoroimunoensaios, devido: i) ao caráter monocromático das emissões dos complexos com Eu3+ e Tb3+; ii) à elevada intensidade luminescente dos complexos [Tb(BTC)(H2O)n]; e iii) às emissões nas três cores primárias apresentadas por estes complexos, dentre os quais os complexos de Eu3+ e Tb3+ se mostraram bons Dispositivos Moleculares Conversores de Luz (DMCLs) / This work reports the synthesis and characterization of Eu3+, Gd3+ and Tb3+ benzenetricarboxylate complexes and the correlation of their structural and chemical characteristics with their photoluminescent properties. The benzenetricarboxylate complexes [TR(BTC)(H2O)n] were prepared in aqueous solution, and were obtained in the form of white, insoluble and non-hygroscopic powders. The [TR(EMA)(H2O)2] complexes presents isomorphism among them as as the [TR(TLA)(H2O)4] complexes. The thermoanalysis curves showed that the [Eu(TMA)(H2O)6] and [Gd(TMA)(H2O)6] complexes have the same crystalline structure. However, the [Tb(TMA)] complex is anhydrous. The IR spectra of the [TR(BTC)(H2O)n] complexes confirm that the BTC3- ligands are coordinated to the TR3+ ions through the carboxylate groups. The phosphorescence spectra of [Gd(BTC)(H2O)n] complexes exhibit a broad and characteristic emission band of the BTC3- ligands (c.a. 450 nm); the mensure of the ligands T1 states indicated that the T1 state energies varies between 25100 and 25700 cm-1, which is highest than 5D0 and 5D4 states of Eu3+ and Tb3+ ions, respectively. The efficiency of the ligand-TR3+ energy transfer in the [Eu(BTC)(H2O)n] and [Tb(BTC)(H2O)n] complexes is confirmed by their spectra of excitation (high intensity of the ligand excitation band, c.a. 295 nm) and emission (they have no ligand phosphorescence band, but the characteristics emission bands of TR3+ ions). The emission spectra of the [Tb(BTC)(H2O)n] complexes exhibit their highly intense green luminescence, specially to the anhydrous [Tb(TMA)] complex, that present the advantage of not undergoing the luminescence suppression effect caused by coupling with the intermediary vibrational levels of the water molecules. The luminescence spectra of [Eu(BTC)(H2O)n] complexes presents non-degenerated emission bands in thin and well defined peaks, indicating that the Eu3+ ions are in chemical environment with well defined symmetry, confirming the crystalline character indicated by the X-rays diffractograms. The longest emission lifetimes (between 7,386 and 12,025 ms) of the [TR(BTC)(H2O)n] complexes were found with the Gd3+ complexes, followed by the Tb3+ complexes (0,712 to 1,265 ms), and the Eu3+ complexes (0,253 to 0,630 ms). The [Eu(BTC)(H2O)n] complexes presented quantum efficiencies between 12 and 24%. This value decreases with the growth of the hydration degree of the complex. The [TR(BTC)(H2O)n] complexes are promising candidates for applications such as optical markers, emission layers in electroluminescent devices and in the developing of fluoroimmunoassays due to: i) the monochromatic character of the Eu3+ and Tb3+ complexes emissions; ii) the high luminescence intensities of the [Tb(BTC)(H2O)n] complexes; and iii) the emissions in the three primary colors presented by this complexes. Moreover, the Eu3+ and Tb3+ complexes are efficient light conversion molecular devices (LCMDs)
2

Nanomateriais luminescentes de terras raras utilizando complexos de benzenotricarboxilatos como precursores / Rare earth luminescent nanomaterials using benzenetricarboxylates complexes as precursors

Silva, Ivan Guide Nunes da 13 November 2015 (has links)
O material Y2O3:Eu3+ vem sendo usado comercialmente como luminóforo vermelho desde da década de 1960, em uma grande variedade de aplicações devido ao seu elevado rendimento quântico (próximo de 100 %), elevada pureza de cor e boa estabilidade. Portanto, este trabalho propõe um novo método de síntese baseado nos complexos benzenotricarboxilatos (BTC) de terras raras trivalentes (RE3+) dopados com íons Eu3+. O objetivo principal é produzir materiais luminescente RE2O3:Eu3+ a temperatura mais baixa (500 °C) e em escala nanométrica. Os complexos precursores [RE(BTC):Eu3+] e [RE(TLA)·n(H2O):Eu3+], onde RE3+: Y, Gd e Lu; BTC: ácido trimésico (TMA) e ácido trimelítico (TLA) foram calcinados em diferentes temperaturas de 500 a 1000 °C, a fim de obter os materiais luminescentes RE2O3:Eu3+. Os complexos foram caracterizados por análise elementar de carbono e hidrogênio, analise térmica (TG), espectroscopia de absorção no infravermelho (FTIR), difração de raios-X - método do pó (XPD) e microscopia eletrônica de varredura (SEM). Todos os complexos são cristalinos e termo estáveis até 460 °C. Dados de fosforescência dos complexos de Y, Gd e Lu mostram que o nível T1 do aníon BTC3- tem energia acima do nível emissor 5D0 do íon Eu3+, indicando que os ligantes podem atuar como sensibilizadores de energia intramolecular. O estudo das propriedades fotoluminescentes dos complexos dopados foi baseado nos espectros de excitação e emissão e curvas de decaimento de luminescência. Ademais, foram determinados os parâmetros de intensidades experimentais (&#937;&#955;), tempos de vida (&#964;), taxas de decaimentos radiativo (Arad) e não-radiativo (Anrad). Os materiais luminescentes RE2O3:Eu3+ foram sintetizados de forma bem sucedida por meio do método benzenotricarboxilatos calcinados a 500, 600, 700, 800, 900 e 1000 °C, apresentando alta homogeneidade química e controle de tamanho de cristalito. Os nanomateriais foram caracterizados pelas técnicas de FTIR, XPD SEM e TEM revelando a obtenção dos materiais C-RE2O3:Eu3+ mesmo a 500 °C. Os dados de XPD dos materiais confirmaram um aumento do tamanho dos cristalitos de 5 até 52 nm (equação de Scherrer) de em função da temperatura de calcinação de 500 a 1000 °C, respectivamente, corroborados pelas técnicas de SEM e TEM. Os espectros de emissão de RE2O3:Eu3+ mostram uma banda larga atribuída a transição interconfiguracional de transferência de carga ligante-metal (LMCT) em 260 nm, i.e. O2-(2p)&#8594Eu3+(4f6). Além disso, foram observadas linhas finas de absorção devido as transições intraconfiguracionais 4f do íon európio (7F0,1&#85945LJ; J: 0, 1, 2, 3 e 4), como esperado. As propriedades fotoluminescentes dos luminóforos foram baseadas nos espectros (excitação e emissão) e curvas de decaimento luminescente. Os parâmetros de intensidade experimental, tempos de vida, assim como as taxas de decaimentos radiativos e não radiativos foram calculados. As propriedades fotônicas dos nanomateriais são consistentes com o sítio de baixa simetria C2 ocupado pelo íon Eu3+ no C-RE2O3:Eu3+, produzindo emissão vermelha dominada pela transição hipersensível 5D0&#85947F2 do íon Eu3+ no sitio C2, ao invés do sítio centrossimétrico S6. Além disso, os nanomateriais Y2O3:Eu3+ exibem características espectroscópicas semelhantes e elevados valores de eficiência quântica (&#951;~91 %), compatível com os luminóforos comerciais disponíveis no mercado. Este novo método pode ser utilizado para o desenvolvimento de novos nanomateriais contendo íons terras raras, assim como outros íons metálicos. / Y2O3:Eu3+ has been used as luminophore since the early 1960s, despite the large variety of potential substitute materials tested so far, this luminophore still be used as commercial red-emission luminescent material in large range of applications due excellent quantum efficiency (close to 100 %), high color purity and good stability. Consequently, This work propose a new benzenetricarboxylate (BTC) method, which use Eu3+ ion doped in the trivalent rare earths (RE3+) complexes to produce RE2O3:Eu3+ luminescent materials at lower temperature (500 °C) and nanoscale. The [RE(BTC):Eu3+] and [RE(TLA)·n(H2O):Eu3+] complexes where RE3+: Y, Gd and Lu; BTC: trimesic acid (TMA) and trimellitic acid (TLA) and annealed materials (500, 600, 700, 800, 900 and 1000 °C) can be obtained without the need of intricate experimental setup. The complexes were characterized by carbon and hydrogen elemental analysis, thermal analyses (TG), infrared absorption spectroscopy (FTIR), X-ray powder diffraction (XPD) and scanning electron microscopy (SEM). The complexes are crystalline and thermostable up to 460°C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T1 state of the BTC3- anion has energy higher than the 5D0 emitting level of the Eu3+ ion, indicating that the ligands can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped complexes were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (&#937;&#955;), lifetimes (&#964;), radiative (Arad) and non-radiative (Anrad) decay rates were determined and discussed. In addition, the RE2O3:Eu3+ nanomaterials were successfully synthesized with this unprecedented method using the benzenetricarboxylate precursor complexes annealed at 500, 600, 700, 800, 900 and 1000 °C, with controllable particle size and high chemical homogeneity, crystallite size from 6 to 52 nm (Scherrer\'s equation), confirmed by SEM and TEM images. The nanomaterials characterized by the FTIR, XPD, SEM and TEM techniques revealed that the C-RE2O3:Eu3+ materials were obtained even at 500 °C. The RE2O3:Eu3+ excitation spectra show a broad absorption band assigned to interconfigurational ligand-to-metal charge-transfer (LMCT) band at 260 nm, i.e. O2-(2p)&#8594;Eu3+(4f6). Besides, it is observed the narrow absorption lines arising from the 4f intraconfigurational transitions of the Eu3+ ion (7F0,1&#8594;5LJ; J : 0, 1, 2, 3 and 4), as expected. The characterization of the photoluminescence properties of the luminophores was also based on the analysis of the emission spectra and luminescence decay curves. The experimental intensity parameters (&#937;&#955;), lifetimes (&#964;), as well as radiative (Arad) and non-radiative (Anrad) decay rates were calculated and discussed. The photonic properties of the luminophores are consistent with the low C2 symmetry site occupied by the Eu3+ ion in the cubic C-type RE2O3:Eu3+, yielding the red emission color, which is dominated by the hypersensitive 5D0&#8594;7F2 transition of the Eu3+ ion in the C2 instead of the centrosymmetric S6 sites. Furthermore, the Y2<O3:Eu3+ nanomaterials prepared by this new method exhibit similar emissions spectral features and high values of emission quantum efficiency (&#951;~91 %), compatible with the commercial phosphors currently available in the market. This novel synthetic method can be used to produce large range of rare earth nanophotonic materials, as well as other metal ions.
3

Síntese de complexos benzenotricarboxilatos de terras raras e estudo de suas propriedades fotoluminescentes / Synthesis of rare earths benzenetricarboxylate complexes and study of their photoluminescent properties

Ernesto Rezende Souza 11 June 2008 (has links)
O presente trabalho aborda a síntese e caracterização de complexos benzenotricarboxilatos de íons Eu3+, Gd3+ e Tb3+, com o intuito de investigar suas características químicas e estruturais e correlacioná-las com as propriedades fotoluminescentes. Os complexos benzenotricarboxilato [TR(BTC)(H2O)n] foram sintetizados em solução aquosa, e apresentaram-se na forma de pós brancos, não-higroscópicos e insolúveis em solventes polares ou apolares. Os complexos com o ligante EMA se mostraram isomórficos e com grau de hidratação igual a dois. Os complexos com o ligante TLA também apresentaram isomorfismo, mas com estrutura cristalina diferente da dos complexos com os outros ligantes. Os complexos [Eu(TMA)(H2O)6] e [Gd(TMA)(H2O)6] apresentaram a mesma estrutura cristalina; entretanto, o complexo [Tb(TMA)] se mostrou anidro, o que foi confirmado pela termoanálise. Os espectros de absorção na região do invravermelho dos complexos evidenciaram que os ligantes BTC3- se coordenam aos íons TR3+ através dos grupos carboxilato desprotonados. Os espectros de fosforescência dos complexos [Gd(BTC)(H2O)n] exibem uma banda larga característica da emissão de cor azul dos ligantes BTC3- (c.a. 450 nm); as medidas das energias dos estados tripleto T1 dos ligantes mostraram que as energias dos estados variam de 25100 a 25700 cm-1, energia que é superior às dos níveis emissores 5D0 e 5D4 dos íons Eu3+ e Tb3+, respectivamente. A eficiente transferência de energia ligante-TR3+ (TR3+ = Eu3+ e Tb3+) nos complexos é comprovada pelos seus espectros de excitação (a banda de excitação do ligante apresenta alta intensidade, com máximo em c.a. 295 nm) e de emissão (não apresentam a banda de fosforescência do ligante, mas sim as transições características dos íons TR3+). Os espectros de emissão dos complexos [Tb(BTC)(H2O)n] evidenciaram a intensa luminescência de cor verde destes complexos, especialmente do complexo anidro [Tb(TMA)], que apresenta a grande vantagem de não sofrer supressão de luminescência causada pelos níveis vibracionais intermediários da água. Os espectros de luminescência dos complexos [Eu(BTC)(H2O)n] apresentam bandas desdobradas em picos finos bem definidos, o que significa que os íons Eu3+ nos complexos se encontram em sítios de simetria bem definida, corroborando o caráter cristalino indicados pelos difratogramas de raios X. Dentre os complexos [TR(BTC)(H2O)n], os maiores tempos de vida dos estados emissores correspondem aos estados T1 dos ligantes BTC3- nos complexos com o íon Gd3+ (entre 7,386 e 12,025 ms), seguidos pelo nível 5D4 do íon Tb3+ (entre 0,712 e 1,265) e por fim pelo nível 5D0 do íon Eu3+ (entre 0,253 e 0,630). Os complexos [Eu(BTC)(H2O)n] ainda apresentaram valores de eficiência quântica entre 12 e 24% Este valor decresce com o aumento do número de moléculas de água do sistema, evidenciando o seu caráter supressor de luminescência. Os complexos [TR(BTC)(H2O)n] mostram-se promissores para serem aplicados como marcadores ópticos, camadas emissoras em dispositivos eletroluminescentes e no desenvolvimento de fluoroimunoensaios, devido: i) ao caráter monocromático das emissões dos complexos com Eu3+ e Tb3+; ii) à elevada intensidade luminescente dos complexos [Tb(BTC)(H2O)n]; e iii) às emissões nas três cores primárias apresentadas por estes complexos, dentre os quais os complexos de Eu3+ e Tb3+ se mostraram bons Dispositivos Moleculares Conversores de Luz (DMCLs) / This work reports the synthesis and characterization of Eu3+, Gd3+ and Tb3+ benzenetricarboxylate complexes and the correlation of their structural and chemical characteristics with their photoluminescent properties. The benzenetricarboxylate complexes [TR(BTC)(H2O)n] were prepared in aqueous solution, and were obtained in the form of white, insoluble and non-hygroscopic powders. The [TR(EMA)(H2O)2] complexes presents isomorphism among them as as the [TR(TLA)(H2O)4] complexes. The thermoanalysis curves showed that the [Eu(TMA)(H2O)6] and [Gd(TMA)(H2O)6] complexes have the same crystalline structure. However, the [Tb(TMA)] complex is anhydrous. The IR spectra of the [TR(BTC)(H2O)n] complexes confirm that the BTC3- ligands are coordinated to the TR3+ ions through the carboxylate groups. The phosphorescence spectra of [Gd(BTC)(H2O)n] complexes exhibit a broad and characteristic emission band of the BTC3- ligands (c.a. 450 nm); the mensure of the ligands T1 states indicated that the T1 state energies varies between 25100 and 25700 cm-1, which is highest than 5D0 and 5D4 states of Eu3+ and Tb3+ ions, respectively. The efficiency of the ligand-TR3+ energy transfer in the [Eu(BTC)(H2O)n] and [Tb(BTC)(H2O)n] complexes is confirmed by their spectra of excitation (high intensity of the ligand excitation band, c.a. 295 nm) and emission (they have no ligand phosphorescence band, but the characteristics emission bands of TR3+ ions). The emission spectra of the [Tb(BTC)(H2O)n] complexes exhibit their highly intense green luminescence, specially to the anhydrous [Tb(TMA)] complex, that present the advantage of not undergoing the luminescence suppression effect caused by coupling with the intermediary vibrational levels of the water molecules. The luminescence spectra of [Eu(BTC)(H2O)n] complexes presents non-degenerated emission bands in thin and well defined peaks, indicating that the Eu3+ ions are in chemical environment with well defined symmetry, confirming the crystalline character indicated by the X-rays diffractograms. The longest emission lifetimes (between 7,386 and 12,025 ms) of the [TR(BTC)(H2O)n] complexes were found with the Gd3+ complexes, followed by the Tb3+ complexes (0,712 to 1,265 ms), and the Eu3+ complexes (0,253 to 0,630 ms). The [Eu(BTC)(H2O)n] complexes presented quantum efficiencies between 12 and 24%. This value decreases with the growth of the hydration degree of the complex. The [TR(BTC)(H2O)n] complexes are promising candidates for applications such as optical markers, emission layers in electroluminescent devices and in the developing of fluoroimmunoassays due to: i) the monochromatic character of the Eu3+ and Tb3+ complexes emissions; ii) the high luminescence intensities of the [Tb(BTC)(H2O)n] complexes; and iii) the emissions in the three primary colors presented by this complexes. Moreover, the Eu3+ and Tb3+ complexes are efficient light conversion molecular devices (LCMDs)
4

Nanomateriais luminescentes de terras raras utilizando complexos de benzenotricarboxilatos como precursores / Rare earth luminescent nanomaterials using benzenetricarboxylates complexes as precursors

Ivan Guide Nunes da Silva 13 November 2015 (has links)
O material Y2O3:Eu3+ vem sendo usado comercialmente como luminóforo vermelho desde da década de 1960, em uma grande variedade de aplicações devido ao seu elevado rendimento quântico (próximo de 100 %), elevada pureza de cor e boa estabilidade. Portanto, este trabalho propõe um novo método de síntese baseado nos complexos benzenotricarboxilatos (BTC) de terras raras trivalentes (RE3+) dopados com íons Eu3+. O objetivo principal é produzir materiais luminescente RE2O3:Eu3+ a temperatura mais baixa (500 °C) e em escala nanométrica. Os complexos precursores [RE(BTC):Eu3+] e [RE(TLA)·n(H2O):Eu3+], onde RE3+: Y, Gd e Lu; BTC: ácido trimésico (TMA) e ácido trimelítico (TLA) foram calcinados em diferentes temperaturas de 500 a 1000 °C, a fim de obter os materiais luminescentes RE2O3:Eu3+. Os complexos foram caracterizados por análise elementar de carbono e hidrogênio, analise térmica (TG), espectroscopia de absorção no infravermelho (FTIR), difração de raios-X - método do pó (XPD) e microscopia eletrônica de varredura (SEM). Todos os complexos são cristalinos e termo estáveis até 460 °C. Dados de fosforescência dos complexos de Y, Gd e Lu mostram que o nível T1 do aníon BTC3- tem energia acima do nível emissor 5D0 do íon Eu3+, indicando que os ligantes podem atuar como sensibilizadores de energia intramolecular. O estudo das propriedades fotoluminescentes dos complexos dopados foi baseado nos espectros de excitação e emissão e curvas de decaimento de luminescência. Ademais, foram determinados os parâmetros de intensidades experimentais (&#937;&#955;), tempos de vida (&#964;), taxas de decaimentos radiativo (Arad) e não-radiativo (Anrad). Os materiais luminescentes RE2O3:Eu3+ foram sintetizados de forma bem sucedida por meio do método benzenotricarboxilatos calcinados a 500, 600, 700, 800, 900 e 1000 °C, apresentando alta homogeneidade química e controle de tamanho de cristalito. Os nanomateriais foram caracterizados pelas técnicas de FTIR, XPD SEM e TEM revelando a obtenção dos materiais C-RE2O3:Eu3+ mesmo a 500 °C. Os dados de XPD dos materiais confirmaram um aumento do tamanho dos cristalitos de 5 até 52 nm (equação de Scherrer) de em função da temperatura de calcinação de 500 a 1000 °C, respectivamente, corroborados pelas técnicas de SEM e TEM. Os espectros de emissão de RE2O3:Eu3+ mostram uma banda larga atribuída a transição interconfiguracional de transferência de carga ligante-metal (LMCT) em 260 nm, i.e. O2-(2p)&#8594Eu3+(4f6). Além disso, foram observadas linhas finas de absorção devido as transições intraconfiguracionais 4f do íon európio (7F0,1&#85945LJ; J: 0, 1, 2, 3 e 4), como esperado. As propriedades fotoluminescentes dos luminóforos foram baseadas nos espectros (excitação e emissão) e curvas de decaimento luminescente. Os parâmetros de intensidade experimental, tempos de vida, assim como as taxas de decaimentos radiativos e não radiativos foram calculados. As propriedades fotônicas dos nanomateriais são consistentes com o sítio de baixa simetria C2 ocupado pelo íon Eu3+ no C-RE2O3:Eu3+, produzindo emissão vermelha dominada pela transição hipersensível 5D0&#85947F2 do íon Eu3+ no sitio C2, ao invés do sítio centrossimétrico S6. Além disso, os nanomateriais Y2O3:Eu3+ exibem características espectroscópicas semelhantes e elevados valores de eficiência quântica (&#951;~91 %), compatível com os luminóforos comerciais disponíveis no mercado. Este novo método pode ser utilizado para o desenvolvimento de novos nanomateriais contendo íons terras raras, assim como outros íons metálicos. / Y2O3:Eu3+ has been used as luminophore since the early 1960s, despite the large variety of potential substitute materials tested so far, this luminophore still be used as commercial red-emission luminescent material in large range of applications due excellent quantum efficiency (close to 100 %), high color purity and good stability. Consequently, This work propose a new benzenetricarboxylate (BTC) method, which use Eu3+ ion doped in the trivalent rare earths (RE3+) complexes to produce RE2O3:Eu3+ luminescent materials at lower temperature (500 °C) and nanoscale. The [RE(BTC):Eu3+] and [RE(TLA)·n(H2O):Eu3+] complexes where RE3+: Y, Gd and Lu; BTC: trimesic acid (TMA) and trimellitic acid (TLA) and annealed materials (500, 600, 700, 800, 900 and 1000 °C) can be obtained without the need of intricate experimental setup. The complexes were characterized by carbon and hydrogen elemental analysis, thermal analyses (TG), infrared absorption spectroscopy (FTIR), X-ray powder diffraction (XPD) and scanning electron microscopy (SEM). The complexes are crystalline and thermostable up to 460°C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T1 state of the BTC3- anion has energy higher than the 5D0 emitting level of the Eu3+ ion, indicating that the ligands can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped complexes were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (&#937;&#955;), lifetimes (&#964;), radiative (Arad) and non-radiative (Anrad) decay rates were determined and discussed. In addition, the RE2O3:Eu3+ nanomaterials were successfully synthesized with this unprecedented method using the benzenetricarboxylate precursor complexes annealed at 500, 600, 700, 800, 900 and 1000 °C, with controllable particle size and high chemical homogeneity, crystallite size from 6 to 52 nm (Scherrer\'s equation), confirmed by SEM and TEM images. The nanomaterials characterized by the FTIR, XPD, SEM and TEM techniques revealed that the C-RE2O3:Eu3+ materials were obtained even at 500 °C. The RE2O3:Eu3+ excitation spectra show a broad absorption band assigned to interconfigurational ligand-to-metal charge-transfer (LMCT) band at 260 nm, i.e. O2-(2p)&#8594;Eu3+(4f6). Besides, it is observed the narrow absorption lines arising from the 4f intraconfigurational transitions of the Eu3+ ion (7F0,1&#8594;5LJ; J : 0, 1, 2, 3 and 4), as expected. The characterization of the photoluminescence properties of the luminophores was also based on the analysis of the emission spectra and luminescence decay curves. The experimental intensity parameters (&#937;&#955;), lifetimes (&#964;), as well as radiative (Arad) and non-radiative (Anrad) decay rates were calculated and discussed. The photonic properties of the luminophores are consistent with the low C2 symmetry site occupied by the Eu3+ ion in the cubic C-type RE2O3:Eu3+, yielding the red emission color, which is dominated by the hypersensitive 5D0&#8594;7F2 transition of the Eu3+ ion in the C2 instead of the centrosymmetric S6 sites. Furthermore, the Y2<O3:Eu3+ nanomaterials prepared by this new method exhibit similar emissions spectral features and high values of emission quantum efficiency (&#951;~91 %), compatible with the commercial phosphors currently available in the market. This novel synthetic method can be used to produce large range of rare earth nanophotonic materials, as well as other metal ions.

Page generated in 0.0812 seconds