• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions de la protéine suppresseur de tumeurs PTEN : régulation par les β-arrestines et par l’interaction intramoléculaire / Functions of Tumour Suppressor PTEN : Regulation through Beta-arrestins and intramolecular interaction

Lima Fernandes, Evelyne 10 July 2012 (has links)
La protéine suppresseur de tumeurs PTEN (Phosphatase and tensin deleted on chromosome 10) est une phosphatase lipidique. En déphosphorylant le phosphatidylinositol (3,4,5) trisphosphate (PIP3) en PI(4,5) P2, PTEN contre-régule la voie PI3K/Akt et inhibe la prolifération. D’autres fonctions de PTEN peuvent être indépendantes de son activité phosphatase lipidique, notamment l’inhibition de la migration. Bien que PTEN soit, après p53, le suppresseur de tumeurs le plus muté dans un large panel de cancers (gliomes, prostate, sein, endomètre…), les mécanismes par lesquels ses fonctions sont régulées ne sont pas entièrement élucidés. Par une approche de double-hybride, notre équipe a identifié que les β-arrestines (β-arrs), des protéines d’échafaudage, interagissent avec PTEN. Nos travaux mettent en évidence que l’interaction entre PTEN et les β-arrs permet de moduler ses deux activités dépendantes ou non de son activité phosphatase lipidique. D’une part, les β-arrs augmentent l’activité phosphatase lipidique de PTEN in vitro. La GTPase RhoA et sa kinase d’aval ROCK activent PTEN, et ceci se fait par l’intermédiaire des β-arrs. La stimulation du récepteur à l’acide lysophosphatidique (LPA), qui active la voie RhoA/ROCK, augmente la formation du complexe PTEN/β-arrs et permet le recrutement du complexe à la membrane. Par l’effet positif sur l’activité phosphatase lipidique de PTEN, les β-arrs participent à l’inhibition d’Akt et de la prolifération dans les fibroblastes embryonnaires de souris (MEF). A l’inverse dans les gliomes U373, les β-arrs lèvent l’inhibition de la migration exercée par le domaine C2 de PTEN, indépendamment de son activité phosphatase lipidique. En aval de l’activation de RhoA induite par blessure du tapis cellulaire, les β-arrs interagissent davantage avec PTEN et rétablissent la migration des gliomes. De ce fait, les β-arrs régulent différentiellement les fonctions de PTEN importantes pour le contrôle de la prolifération cellulaire et la migration. Enfin, l’activité et la localisation de PTEN sont modulées par des interactions intramoléculaires entre ses domaines catalytiques, C2 et sa queue C-terminale régulatrice. Ces interactions régulent le passage d’une conformation fermée vers une conformation ouverte et active de PTEN. Grâce au développement d’un biosenseur de PTEN basé sur le transfert d’énergie par résonnance (RET), nous pouvons suivre pour la première fois les changements conformationnels de PTEN dans les cellules vivantes. En utilisant ce biosenseur nous montrons que la mutation des résidus impliqués dans les interactions intramoléculaires entraine des changements de conformation détectés par des variations de RET. De plus, l’activation de voies de signalisation connues pour activer PTEN, entrainent des changements conformationnels qui corrèlent avec l’augmentation de l’activité phosphatase lipidique de PTEN. Nos données montrent que le biosenseur peut être utilisé comme outil pour détecter les changements d’activité de PTEN dans les cellules vivantes. L’axe suppresseur de tumeurs/oncogène PTEN/PI3K/Akt joue un rôle essentiel dans la progression tumorale et constitue une cible thérapeutique pour le cancer. L’ensemble de nos travaux permet d’ajouter un degré de compréhension dans la régulation de PTEN, tant par les β-arrs que par l’interaction intramoléculaire et les changements conformationnels. / The Tumour Suppressor protein PTEN (Phosphatase and tensin deleted on chromosome 10) is a lipid phosphatase. By converting phosphatidylinositol (3,4,5) trisphosphate (PIP3) to PI(4,5)P2, PTEN inhibits the PI3K/Akt signalling pathway and cell proliferation. Other functions attributed to PTEN, including the inhibition of cell migration, can occur independently of its lipid phosphatase activity. Although PTEN function is dysregulated in a broad range of cancers (gliomas, prostate, breast, endometrium…), the mechanisms by which it is regulated are far from being completely elucidated. Using a two-hybrid approach, our team identified that the molecular scaffolds, β-arrestins (β-arrs), interact with PTEN.Our studies demonstrate that β-arrs modulate distinct functional outputs of PTEN that in turn are dependent or independent on its lipid phosphatase activity. β-arrs increase the lipid phosphatase activity of PTEN in vitro. The small GTPase RhoA and its downstream effector ROCK activate PTEN and this effect requires β-arrs. The stimulation of the lysophosphatidic acid receptor 1 (LPA1-R) receptor, that activates the RhoA/ROCK pathway, was found to increase the association of β-arrs with PTEN and induced plasma membrane translocation of the complex. Through their stimulatory effect on the lipid phosphatase activity of PTEN, β-arrs inhibit the PI3K/Akt pathway and proliferation of mouse embryonic fibroblasts. In contrast, in U373 glioma cells, βarrs release the brake on cell migration, which is mediated by the C2 domain of PTEN independently of its lipid phosphatase activity. Following wounding of a cell monolayer, and RhoA activation, β-arrs show increased association with PTEN, and rescue glioma cell migration. β-arrs therefore differentially regulate functions of PTEN important in the control of cell proliferation and migration.The activity and localization of PTEN are under tight control of intramolecular interactions between its regulatory C-terminal tail, and catalytic and C2 domains. These intramolecular interactions regulate a switch between a closed form of PTEN, and an open and active form that is targeted to the membrane. We have developed a resonance energy transfer (RET)-based biosensor that permits the monitoring of PTEN conformational change in live cells. Using the biosensor we demonstrate that mutation of residues implicated in the intramolecular switch produce conformational rearrangement of PTEN, detected by changes in RET. Furthermore, activation of signalling pathways known to activate PTEN, elicit conformational changes that parallel increased PTEN lipid phosphatase activity in living cells. Combined, these data demonstrate that the biosensor can be used as a tool to detect changes in PTEN tumour suppressor activity in live cells.The tumour suppressor/oncogene PTEN/PI3K/Akt axis plays a key role in tumour progression and represents a major therapeutic target in the treatment of cancer. Our studies help to further our understanding of how tumour suppressor PTEN is controlled by inter- and intramolecular interactions and provide a biosensor that can report changes in PTEN activity.
2

ETUDE DE LA REGULATION DES RECEPTEURS DE PEPTIDES N-FORMYLES

Huet Moulard, Emilie 05 June 2007 (has links) (PDF)
Les cellules phagocytaires constituent la première ligne de défense contre les pathogènes. Leur migration dirigée vers le site infectieux et leurs fonctions microbicides sont l'aboutissement de voies de signalisation intracellulaires sollicitées par la stimulation de récepteurs couplés aux protéines G, les récepteurs de chimioattractants. Après fixation du ligand et transmission du signal par la protéine G, les récepteurs sont phosphorylés et interagissent avec les b-arrestines, protéines d'échafaudage concourrant à l'internalisation des récepteurs. Plusieurs exemples récents suggèrent que les b-arrestines pourraient également participer à la signalisation. <br />Le travail présenté dans ce mémoire concerne les récepteurs de la famille FPR (Formyl Peptide Receptor) et plus spécialement le récepteur FPRL1 (FPR-like 1), pour lesquels de nouveaux agonistes dérivant de protéines bactériennes ou mitochondriales humaines ont été identifiés. La phosphorylation du récepteur FPRL1 a été caractérisée. Il a été montré que les Β-arrestines interagissent avec celui-ci et qu'elles sont indispensables à son internalisation. Diverses approches ont conclu que l'activation rapide des MAP kinases ERK1/2, enclenchée par la stimulation du récepteur FPRL1, est majoritairement dépendante de la protéine G héterotrimérique et qu'il n'y pas de signalisation transmise par les b-arrestines. Enfin, une analyse protéomique des complexes multi-protéiques bâtis autour du couple FPRL1/b-arrestine a été menée par la méthode TAP (Tandem Affinity Purification). Le complexe adaptateur AP3, homologue d'AP2 a été identifié comme partenaire des b-arrestines après stimulation du récepteur FPRL1.

Page generated in 0.0641 seconds