• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian Inference Frameworks for Fluorescence Microscopy Data Analysis

January 2019 (has links)
abstract: In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on synthetic data. These three frameworks are self-contained, and can be used concurrently so that the fluorescence profile and emitter locations are both considered unknown and, under some conditions, learned simultaneously. The framework I present is flexible and may be adapted to accommodate the inference of other parameters, such as emission photophysical kinetics and the trajectories of moving molecules. My TIRF-specific implementation may find use in the study of structures on cell membranes, or in studying local sample properties that affect fluorescent molecule photon emission rates. / Dissertation/Thesis / Masters Thesis Applied Mathematics 2019
2

Nonparametric Bayesian Modelling in Machine Learning

Habli, Nada January 2016 (has links)
Nonparametric Bayesian inference has widespread applications in statistics and machine learning. In this thesis, we examine the most popular priors used in Bayesian non-parametric inference. The Dirichlet process and its extensions are priors on an infinite-dimensional space. Originally introduced by Ferguson (1983), its conjugacy property allows a tractable posterior inference which has lately given rise to a significant developments in applications related to machine learning. Another yet widespread prior used in nonparametric Bayesian inference is the Beta process and its extensions. It has originally been introduced by Hjort (1990) for applications in survival analysis. It is a prior on the space of cumulative hazard functions and it has recently been widely used as a prior on an infinite dimensional space for latent feature models. Our contribution in this thesis is to collect many diverse groups of nonparametric Bayesian tools and explore algorithms to sample from them. We also explore machinery behind the theory to apply and expose some distinguished features of these procedures. These tools can be used by practitioners in many applications.

Page generated in 0.0709 seconds