• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient Crosslinks from Oligo(ß-alanine) Segments Grafted to Butyl Rubber

Xiao, Shengdong January 2017 (has links)
No description available.
2

A Computational Study of the Role of Hydration in the Assembly of Collagen and Other Bio laments

Mayuram Ravikumar, Krishnakumar 2011 August 1900 (has links)
Hydration is known to be crucial in biomolecular interactions including ligand binding and self-assembly. In our earlier studies we have shown the key role of water in stabilizing the specific parts of the collagen triple helix depending on the imino acid content. We further showed that the primary hydration shell around collagen could act as a lubricating layer aiding in collagen assembly. But key details on the structure and dynamics of water near protein surfaces and its role in protein-protein interactions remain unclear. In the current study we have developed a novel method to analyze hydration maps around peptides at 1-A resolution around three self-assembling lament systems with known structures, that respectively have hydrated (collagen), dry non-polar and dry polar (amyloid) interfaces. Using computer simulations, we calculate local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two laments approach, whereas local water diffusion, orientation, or hydrogen bonding events have no direct effect. Hydration forces between hydrated, polar, and non-polar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces ranging in character from ‘hydrophobic’ to ‘hydrophilic,’ have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study. In a related study through simulations we show that the rate of tissue optical clearing by chemical agents correlated with the preferential formation of hydrogen bond bridges between agent and collagen. Hydrogen bond bridge formation disrupts the collagen hydration layer and facilitates replacement by a chemical agent to destabilize the tertiary structure of collagens thereby reducing light scattering. This study suggests that the clearing ability of an alcohol not only depends on its molecular size, but also on the position of hydroxyl groups on its backbone.
3

Conformational Analysis of Designed and Natural Peptides : Studies of Aromatic/Aromatic and Aromatic/Proline Interactions by NMR

Sonti, Rajesh January 2013 (has links) (PDF)
This thesis describes NMR studies which probe weak interactions between amino acid side chains in folded peptide structures. Aromatic/aromatic interactions between facing phenylalanine residues have been probed in antiparallel β-sheets, while aromatic/proline interactions have been examined using cyclic peptide disulfides that occur in the venom of marine cone snails. Novel intramolecular hydrogen bonded structures in hybrid peptides containing backbone homologated residues, specifically γ-amino acids, are also described. Chapter 1 provides a brief background to the principles involved in the design of antiparallel β-sheet structures and an introduction to previous studies on aromatic/aromatic and aromatic/proline interactions in influencing peptide conformations. A summary of the NMR methods used is also presented. Chapter 2 discusses the structural characterisation of a designed 14 residue, three stranded β-sheet peptide, Boc-LFVDP-PLFVADP-PLFV-OMe (LFV14). The results described in this Chapter support the presence of multiple conformational states about the χ1 (Cα-Cβ) torsional degree of freedom for the interacting aromatic pairs in solution. Chapter 3 presents the structural characterisation of a designed 19 residue three stranded hybrid β-sheet peptide, Boc-LVβFVDPGLβFVVLDPGLVLβFVV-OMe (BBH19). β-amino acid residues (β-phenylalanine, βPhe) were incorporated at facing positions on antiparallel β-sheets. The BBH19 structure provides an example of interaction between the N and C-terminal strands in a three stranded structure with an α/β hybrid backbone. Chapter 4 focuses on studies of the conformations of the contryphan In936 (GCVDLYPWC*) from Conus inscriptus and the related peptide Lo959 (GCPDWDPWC*) from Conus loroissi. Both peptides possess a macrocyclic 23 membered ring, with multiple accessible conformational states. Chapter 5 describes conformational analysis of a novel 20 membered cyclic peptide disulfide, CIWPWC (Vi804), from Conus virgo. NMR structures were calculated for Vi804 and an analog peptide, CIDWPWC, DW3-Vi804. Chapter 6 explores the solution conformation of hybrid sequences containing α and γ residues. Oligopeptides of the type (αγ)n and (αγγ)n have been studied in solution by NMR methods. Chapter 7 provides a summary of the results described in this thesis and highlights the major conclusions.

Page generated in 0.0218 seconds