• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 41
  • 12
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 146
  • 74
  • 38
  • 28
  • 17
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles

Conner, Justin Lawrence 12 1900 (has links)
Reptiles can often experience perturbations that greatly influence their metabolic status (e.g., temperature, exercise, digestion, and ontogeny). The most common cause of fluctuations in metabolic status in post-embryonic reptiles is arguably digestion and physical activity (which will be further referred to as exercise). The objective of this thesis is to determine the mechanisms involved in CO2 transport during digestion, determine the mechanisms that allow for the maintenance of acid-base homeostasis during digestion, and observing the effect of an understudied form of exercise in semi-aquatic reptiles on the regulation of metabolic acidosis and base deficit. This dissertation provided evidence for potentially novel and under investigated mechanisms for acid-base homeostasis (e.g., small intestine and tissue buffering capacity; Chapters 3 & 4), while also debunking a proposed hypothesis for the function of an anatomical feature that still remains a mystery to comparative physiologist (Chapter 2). This thesis is far from systematic and exhaustive in its approach, however, the work accomplished in this dissertation has become the foundation for multiple distinct paths for ecologically relevant investigations of the regulation of metabolic acidosis/alkalosis in reptiles.
12

Ruthenium-Catalyzed Hydrogenation of Aqueous Sodium Bicarbonate

Covino, Duane P. 01 January 1980 (has links) (PDF)
This research report investigated the ruthenium-catalyzed hydrogenation of aqueous sodium bicarbonate. Subjects of the investigation included: the "blank" effect of the 316 stainless steel reactor in the batch mode; the catalytic activities at 150°C for unsupported ruthenium, including ruthenium purge and the metal produced from the in situ reduction of RuCl3·1-3H2O and Ru(IV)O2·H2O; the catalytic activities at 150°C for supported ruthenium including 4.05% w/w ruthenium on alumina, 5.25 and 20.85%w/w ruthenium on molecular sieve SK-41 (ammonium - substituted Y-type), 3.34 and 17.48% w/w ruthenium on SK-41 (prepared by the in situ reduction of the RuCl3·1-3H2O exchange sieve); orders of reaction rate with respect to hydrogen, bicarbonate, and catalyst at 150°C; activity as a function of temperature; and susceptibility to deactivation. The reaction appears to be zero order in both hydrogen and bicarbonate and first order in catalyst at 150°C in the concentration ranges examined; saturation of an assumed limited number of active catalyst sites is assumed to cause the observed zero orders. Conversion was negligible below 150°C, and optimum in the 150°C-200°C range, with product distribution at 150°C heavily favoring methane; e.g. 99% v/v. The stainless steel reactor was found not to catalyze the reaction at 150°C during a two hour reaction. Catalytic activity for unsupported ruthenium paralleled metal surface area (as determined by BET adsorption), while the inverse was found to be true for sieve-supported metal; mass transfer impedance and electronic effects are assumed to be contributing factors. The reaction on alumina-supported ruthenium produced an undesirable white coating, composition as yet undetermined, which strongly adhered to the support and to the reactor walls. Although the reaction investigated is even more exothermic than the Fischer-Tropsch production of methane, and the ruthenium catalyst was also found to be subject to deactivation, the reaction of interest may have an economic advantage over the Fischer-Tropsch synthesis, in that it is less expensive to decompose a bicarbonate species using hydration energy and then hydrogenate directly, then to thermally decompose the ore and hydrogenate the CO2 produced.
13

Etude de la cristallisation du bicarbonate de sodium raffiné: contribution au modèle des colonnes à bulles

Gutierrez, Vanessa 15 March 2010 (has links)
La société Solvay est le plus grand producteur de bicarbonate de sodium raffiné au monde. Le NaHCO3 est un des produits parmi les plus connus et utilisés. Sa production a lieu dans des colonnes à bulles de volumes très importants. La production du bicarbonate de sodium raffiné dans ces réacteurs peut se résumer par la réaction entre une solution saturée de carbonate de sodium (Na2CO3) et le CO2(gaz) <p> <p>Cette production implique la connaissance et le contrôle des réacteurs de type triphasique. En effet dans ce procédé on met en jeu deux types de transferts entre un gaz et un liquide le CO2 et la solution de Na2CO3 et entre un liquide et un solide, NaHCO3 (liq) et NaHCO3 (solide)<p>Le but de ce travail est d’acquérir des informations concernant la cristallisation du NaHCO3 dans une colonne à bulles. L’étude de la cristallisation de ce produit se fait au travers des modèles des cinétiques de cristallisation :la vitesse de croissance G (m•s-1) et la vitesse de nucléation J ( / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
14

Bicarbonate and dichloroacetate: Evaluating pH altering therapies in a mouse model for metastatic breast cancer

Robey, Ian, Martin, Natasha January 2011 (has links)
BACKGROUND:The glycolytic nature of malignant tumors contributes to high levels of extracellular acidity in the tumor microenvironment. Tumor acidity is a driving force in invasion and metastases. Recently, it has been shown that buffering of extracellular acidity through systemic administration of oral bicarbonate can inhibit the spread of metastases in a mouse model for metastatic breast cancer. While these findings are compelling, recent assessments into the use of oral bicarbonate as a cancer intervention reveal limitations.METHODS:We posited that safety and efficacy of bicarbonate could be enhanced by dichloroacetate (DCA), a drug that selectively targets tumor cells and reduces extracellular acidity through inhibition of glycolysis. Using our mouse model for metastatic breast cancer (MDA-MB-231), we designed an interventional survival study where tumor bearing mice received bicarbonate, DCA, or DCA-bicarbonate (DB) therapies chronically.RESULTS:Dichloroacetate alone or in combination with bicarbonate did not increase systemic alkalosis in mice. Survival was longest in mice administered bicarbonate-based therapies. Primary tumor re-occurrence after surgeries is associated with survival rates. Although DB therapy did not significantly enhance oral bicarbonate, we did observe reduced pulmonary lesion diameters in this cohort. The DCA monotherapy was not effective in reducing tumor size or metastases or improving survival time. We provide in vitro evidence to suggest this outcome may be a function of hypoxia in the tumor microenvironment.CONCLUSIONS:DB combination therapy did not appear to enhance the effect of chronic oral bicarbonate. The anti-tumor effect of DCA may be dependent on the cancer model. Our studies suggest DCA efficacy is unpredictable as a cancer therapy and further studies are necessary to determine the role of this agent in the tumor microenvironment.
15

Imaging dynamic volume changes in astrocytes

Florence, Clare Margaret 25 February 2011
Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in the brains extracellular potassium (K+) and pH homeostasis. Pathological brain states have been shown to cause astrocyte swelling. However, these volume changes have never before been verified to occur in response to physiological activity. In the present thesis, two-photon laser scanning microscopy was used to visualize real-time astrocyte volume changes in the stratum radiatum of the CA1 region of the hippocampus. Astrocyte somas and primary processes were observed to swell by 19.0±0.9% in response to a physiological (3 mM) increase in the concentration of extracellular K+. Astrocyte swelling was partially mediated by K+ influx through inwardly rectifying K+ channels (Kir), as their inhibition resulted in a significant decrease of the increased K+ induced astrocyte swelling (13.9±0.9%). In addition, the bicarbonate ion (HCO3-) was found to play a significant role in the increased K+ induced astrocyte swelling. The astrocyte swelling was significantly decreased when the influx of HCO3- was decreased in 1) a HCO3- free extracellular solution (5.4±0.7%), 2) in the presence of an extracellular carbonic anhydrase inhibitor (11.4±0.6% ), and 3) when the activity of the sodium-bicarbonate cotransporter (NBC) was blocked (8.3±0.7%) . Conversely, astrocytes were found to shrink by 7.7±0.5% in response to ã-Amino-butyric Acid (GABA) receptor activation. GABAA receptor mediated astrocyte shrinkage was significantly decreased to 5.0±0.6% when HCO3- efflux was reduced. Furthermore, in this thesis it was shown for the first time that astrocytes swell in response to neuronal stimulation (4.0±0.4%). This activity induced astrocyte swelling was significantly decreased to 1.5±0.2% in a HCO3- free extracellular solution. These astrocyte volume changes may have important implications for the regulation of brain activity under both physiological and pathological brain states.
16

Imaging dynamic volume changes in astrocytes

Florence, Clare Margaret 25 February 2011 (has links)
Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in the brains extracellular potassium (K+) and pH homeostasis. Pathological brain states have been shown to cause astrocyte swelling. However, these volume changes have never before been verified to occur in response to physiological activity. In the present thesis, two-photon laser scanning microscopy was used to visualize real-time astrocyte volume changes in the stratum radiatum of the CA1 region of the hippocampus. Astrocyte somas and primary processes were observed to swell by 19.0±0.9% in response to a physiological (3 mM) increase in the concentration of extracellular K+. Astrocyte swelling was partially mediated by K+ influx through inwardly rectifying K+ channels (Kir), as their inhibition resulted in a significant decrease of the increased K+ induced astrocyte swelling (13.9±0.9%). In addition, the bicarbonate ion (HCO3-) was found to play a significant role in the increased K+ induced astrocyte swelling. The astrocyte swelling was significantly decreased when the influx of HCO3- was decreased in 1) a HCO3- free extracellular solution (5.4±0.7%), 2) in the presence of an extracellular carbonic anhydrase inhibitor (11.4±0.6% ), and 3) when the activity of the sodium-bicarbonate cotransporter (NBC) was blocked (8.3±0.7%) . Conversely, astrocytes were found to shrink by 7.7±0.5% in response to ã-Amino-butyric Acid (GABA) receptor activation. GABAA receptor mediated astrocyte shrinkage was significantly decreased to 5.0±0.6% when HCO3- efflux was reduced. Furthermore, in this thesis it was shown for the first time that astrocytes swell in response to neuronal stimulation (4.0±0.4%). This activity induced astrocyte swelling was significantly decreased to 1.5±0.2% in a HCO3- free extracellular solution. These astrocyte volume changes may have important implications for the regulation of brain activity under both physiological and pathological brain states.
17

Effect of alkalinity in irrigation water on selected greenhouse crops

Valdez Aguilar, Luis Alonso 01 November 2005 (has links)
Effect of Alkalinity in Irrigation Water on Selected Greenhouse Crops. (August 2004) Luis Alonso Valdez Aguilar, B.S., Universidad Aut??noma de Nuevo Le??n, Mexico; M.S., Universidad Aut??noma Chapingo, Mexico Chair of Advisory Committee: Dr. David Wm. Reed Bicarbonate (HCO3-) and carbonate (CO32-) are the most important ions that determine alkalinity. When the carbonates accumulate in a growing medium, the growing medium solution pH reaches levels that cause plant growth inhibition, which is caused primarily by the transformation of soluble forms of Fe into insoluble forms. The general objective of this research was to provide information about the limits of tolerance to alkalinity in ornamental plants, and to study the interaction of ions such as ammonium (NH4+) and nitrate (NO3-) on the response of plants to alkalinity, as well as the effect of the counter-ions potassium (K+), sodium (Na+), cesium (Cs+), ammonium (NH4+) and rubidium (Rb+). The maximum SPAD index was estimated to occur at 0 mM of NaHCO3 in chrysanthemum, mini-rose, and hibiscus ??Bimini Breeze?? and ??Mango Breeze??. For vinca it was set at 2.64 mM. A 15% decrease from the maximum SPAD index was considered the threshold to declare the toxic concentration of NaHCO3, which was calculated based on the maximum SPAD index predicted by the models. The toxic concentration of NaHCO3 was set at 4.1, 1.1, 6.7, 3.1, and 6.3 mM of NaHCO3 in chrysanthemum, mini-rose, vinca, and hibiscus ??Mango Breeze?? and ??Bimini Breeze??, respectively. Hibiscus ??Bimini Breeze?? was considered tolerant to alkalinity, due to increased Fe-reduction capacity and acidification of the growing medium. In the hydroponic experiment, results showed that the NH4+:NO3- ratio altered the response of sunflower plants to alkalinity. Sunflower plants grew better in solutions containing 5 mM NaHCO3 prepared with a 0.25:0.75 NH4+:NO3- ratio. This was possible due to the reaction of NH4+ with the HCO3-, which reduced its buffering capacity. The response to HCO3--induced alkalinity was modified by the counter-cation of HCO3-. In bean plants, at low-to-intermediate levels of Na+ and HCO3- induced approximately same growth decrease. At high concentration, Na+ induced a decrease on shoot growth that exceeded the toxic effects of HCO3-. Thus, the toxic effect of Na+ is higher than that of HCO3- when its concentration is high. Rubidium was extremely toxic at concentrations of 7.5 mM.
18

Induction and regulation of dissolved inorganic carbon transport in green algae /

Bozzo, Gale Giancarlo. January 2000 (has links)
Thesis (M.Sc.)--York University, 2000. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 65-72). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ56165
19

The Effect of Sodium Bicarbonate on the Stability of Phenytoin IV Solutions

Hadzic, Ajla, Un, Sophia, Lee, David January 2015 (has links)
Class of 2015 Abstract / Objectives: To determine if a change in the amount of sodium bicarbonate (NaHCO3) in 5 different IV solutions will help prevent phenytoin from falling out of solution (i.e. precipitating). Our working hypothesis is that the stability of the phenytoin solution will change with different IV solutions and will increase with increasing the amount of sodium bicarbonate. Methods: A constant amount of phenytoin injection solution was mixed with a constant amount of one IV solution per beaker. Different amounts of alkalizing agents were then added to each phenytoin and IV mixture. Precipitation of the mixtures was observed every 30 minutes for 4 hours, then again in 24 hours. Results: When different IV solutions were added to the phenytoin and alkalizing agent mixture , the pH of the mixture dropped from 10 to 9 independent of the amount of alkalizing agent present in the mixture. All phenytoin mixtures precipitated within 60 minutes; 0.9% NaCl and phenytoin mixture being the one with the most delayed precipitation. Conclusions: Based on the result of this experiment, we rejected both of our specific aim hypotheses. Our hypothesis is rejected because the stability of the phenytoin solution will not change by using different IV solutions or by changing the amount of sodium bicarbonate.
20

The Effect of Various Levels of Bicarbonate, Phosphorus, and pH on the Translocation of Iron in Plants

Doney, Ronald Conrad 01 May 1959 (has links)
Line-induced chlorosis is a nutritional disease affecting many fruit trees, berries, ornamental shrubs, and flowers in Utah and the western United States. In fact, this disease is of wide distribution on calcareous soils throughout the world. Lime-induced chlorosis has contributed to untold economic loss and has challenged the technical ingenuity of plant and soil scientists throughout the world. As yet the exact cause of chlorosis has not been determined; consequently, no permanent cures have been found.

Page generated in 0.0838 seconds