• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Klassifikation von bikovarianten Differentialkalkülen auf Quantengruppen

Schüler, Axel 09 February 2017 (has links) (PDF)
Unter der Voraussetzung, dass q keine Einheitswurzel ist und dass die Differentiale duij der Fundamentalmatrix den Linksmodul der 1-Formen erzeugen, werden die bikovarianten Differentialkalküle auf den Quantengruppen SLq(N), Oq(N) und Spq(N) klassifiziert. Es wird gezeigt, dass es auf den Quantengruppen SLq(N), N ≥ 3, abgesehen von eindimensionalen Kalkülen und endlich vielen Werten von q genau 2N bikovariante Differentialkalküle gibt. Diese Kalküle haben die Dimension N². Für die Quantengruppen Oq(N) und Spq(N), N ≥ 3, gibt es unter den genannten Voraussetzungen bis auf endlich viele Werte von q genau zwei bikovariante Differentialkalküle der Dimension N². Die Bimodulstruktur der Kalküle sowie die zugeordneten ad-invarianten Rechtsideale werden explizit angegeben. Für die Quantengruppen SLq(N), N ≥ 3, wird gezeigt, dass es, sofern q keine Einheitwurzel ist, genau 2N² + 2N bikovariante Bimoduln vom Typ (u^c u; f) gibt. / If q is not a root of unity and under the assumption that the differentials duij of the fundamental matrix (uij) generate the left module of 1-forms, all bicovariant differential calculi on quantum groups SLq(N), Oq(N) and Spq(N) are classified. It is shown that on quantum groups SLq(N), N ≥ 3, except of 1-dimensional calculi and finitely many values of q, thre are exactly 2N bicovariant differential calculi. The space of invariant forms has dimension N². For quantum groups Oq(N) and Spq(N), N ≥ 3, under the same assumptions and up to finitely many values of q, there are exactly two bicovariant differential calculi of dimension N². The bimodule structure of the calculi as well as the corresponding ad-invariant right ideals are explicitely described. For quantum groups SLq(N), N ≥ 3, there are exactly 2N² + 2N bicovariant bimodules of type (u^c u; f) provided q is not a root of unity.
2

Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels / Quantum groups : actions on Hilbert modules and differential calculi

Thibault de Chanvalon, Manon 08 December 2014 (has links)
Résumé indisponible / Résumé indisponible
3

Klassifikation von bikovarianten Differentialkalkülen auf Quantengruppen

Schüler, Axel 30 November 1994 (has links)
Unter der Voraussetzung, dass q keine Einheitswurzel ist und dass die Differentiale duij der Fundamentalmatrix den Linksmodul der 1-Formen erzeugen, werden die bikovarianten Differentialkalküle auf den Quantengruppen SLq(N), Oq(N) und Spq(N) klassifiziert. Es wird gezeigt, dass es auf den Quantengruppen SLq(N), N ≥ 3, abgesehen von eindimensionalen Kalkülen und endlich vielen Werten von q genau 2N bikovariante Differentialkalküle gibt. Diese Kalküle haben die Dimension N². Für die Quantengruppen Oq(N) und Spq(N), N ≥ 3, gibt es unter den genannten Voraussetzungen bis auf endlich viele Werte von q genau zwei bikovariante Differentialkalküle der Dimension N². Die Bimodulstruktur der Kalküle sowie die zugeordneten ad-invarianten Rechtsideale werden explizit angegeben. Für die Quantengruppen SLq(N), N ≥ 3, wird gezeigt, dass es, sofern q keine Einheitwurzel ist, genau 2N² + 2N bikovariante Bimoduln vom Typ (u^c u; f) gibt. / If q is not a root of unity and under the assumption that the differentials duij of the fundamental matrix (uij) generate the left module of 1-forms, all bicovariant differential calculi on quantum groups SLq(N), Oq(N) and Spq(N) are classified. It is shown that on quantum groups SLq(N), N ≥ 3, except of 1-dimensional calculi and finitely many values of q, thre are exactly 2N bicovariant differential calculi. The space of invariant forms has dimension N². For quantum groups Oq(N) and Spq(N), N ≥ 3, under the same assumptions and up to finitely many values of q, there are exactly two bicovariant differential calculi of dimension N². The bimodule structure of the calculi as well as the corresponding ad-invariant right ideals are explicitely described. For quantum groups SLq(N), N ≥ 3, there are exactly 2N² + 2N bicovariant bimodules of type (u^c u; f) provided q is not a root of unity.

Page generated in 0.3058 seconds