Spelling suggestions: "subject:"bidirectional long shortterm memory"" "subject:"bidirectional long short1term memory""
1 |
DeepDSSR: Deep Learning Structure for Human Donor Splice Sites RecognitionAlam, Tanvir, Islam, Mohammad Tariqul, Househ, Mowafa, Bouzerdoum, Abdesselam, Kawsar, Ferdaus Ahmed 01 January 2019 (has links)
Human genes often, through alternative splicing of pre-messenger RNAs, produce multiple mRNAs and protein isoforms that may have similar or completely different functions. Identification of splice sites is, therefore, crucial to understand the gene structure and variants of mRNA and protein isoforms produced by the primary RNA transcripts. Although many computational methods have been developed to detect the splice sites in humans, this is still substantially a challenging problem and further improvement of the computational model is still foreseeable. Accordingly, we developed DeepDSSR (deep donor splice site recognizer), a novel deep learning based architecture, for predicting human donor splice sites. The proposed method, built upon publicly available and highly imbalanced benchmark dataset, is comparable with the leading deep learning based methods for detecting human donor splice sites. Performance evaluation metrics show that DeepDSSR outperformed the existing deep learning based methods. Future work will improve the predictive capabilities of our model, and we will build a model for the prediction of acceptor splice sites.
|
2 |
SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING BIDIRECTIONAL LSTM FOR CLOSELY RELATED ACTIVITIESPavai, Arumugam Thendramil 01 December 2018 (has links)
Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons with 4 trials per activity per person. A comparison of this BLSTM model is made with the Unidirectional LSTM model. It is observed that there is a significant improvement in the accuracy for recognition of all 27 activities in the case of BLSTM than LSTM.
|
3 |
Identification of Online Users' Social Status via Mining User-Generated DataZhao, Tao 05 September 2019 (has links)
No description available.
|
4 |
Prediction of the number of weekly covid-19 infections : A comparison of machine learning methodsBranding, Nicklas January 2022 (has links)
The thesis two-folded problem aim was to identify and evaluate candidate Machine Learning (ML) methods and performance methods, for predicting the weekly number of covid-19 infections. The two-folded problem aim was created from studying public health studies where several challenges were identified. One challenge identified was the lack of using sophisticated and hybrid ML methods in the public health research area. In this thesis a comparison of ML methods for predicting the number of covid-19 weekly infections has been performed. A dataset taken from the Public Health Agency in Sweden consisting of 101weeks divided into a 60 % training set and a 40% testing set was used in the evaluation. Five candidate ML methods have been investigated in this thesis called Support Vector Regressor (SVR), Long Short Term Memory (LSTM), Gated Recurrent Network (GRU), Bidirectional-LSTM (BI-LSTM) and LSTM-Convolutional Neural Network (LSTM-CNN). These methods have been evaluated based on three performance measurements called Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2. The evaluation of these candidate ML resulted in the LSTM-CNN model performing the best on RMSE, MAE and R2.
|
Page generated in 0.1451 seconds