• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Návrh datového skladu v SaaS společnosti / Design of Data Warehouse in SaaS Company

Zetocha, Adam January 2020 (has links)
The diploma thesis consists of design and steps leading to build of data warehouse in startup developing SaaS product. Theoretical information about data warehouses and business intelligence are projected into design and following process of data warehouse development mainly for marketing data. Importing process of data into a data warehouse and reporting are fully automated.
2

En jämförelse av metoder och verktyg för datahantering och analys inom datalager / A comparison of methods and tools for data management and analysis within data warehouses

Aziz, Adeeba January 2024 (has links)
I detta examensarbete utförs en jämförande analys av metoder och verktyg för hantering och analys av data inom datalager. Med den snabbt ökande mängden data och utvecklingen av molnteknologier står företag inför utmaningen att navigera bland olika metoder för att välja den mest lämpliga för sin specifika datahantering och analysbehov. Rapporten belyser metoden One Big Table (OBT) samt verktyget Data Build Tool (dbt) och undersöker deras för- och nackdelar i datalagermiljöer. För att få en djupare förståelse för deras funktion och effektivitet jämförs de i olika användarfall genom prestandatester på latens och samtidighet med hjälp av verktyget Hyperfine. OBT implementeras med hjälp av Google BigQuery såväl som Google Cloud SQL för PostgreSQL där latens och samtidighet för analytiska målsättningar utvärderas genom användning av Python-skript med SQL-frågor respektive med dbt-modeller. Skripten och dbt-modellerna körs mot BigQuery samt PostgreSQL och de båda implementerar OBT. Resultatet visar att SQL-skripten uppvisade lägre latens än dbt-modeller när de exekverades mot både BigQuery och PostgreSQL. Ett annat fynd är att latensen för SQL-skripten var lägre i PostgreSQL jämfört med BigQuery, medan dbt-modellerna istället uppvisade högre latens i PostgreSQL jämfört med BigQuery. I båda datalagermiljöer visas det även att SQL-skripten presterar bättre än dbt-modeller vid samtidiga körningar. / This bachelor’s thesis presents a comparative analysis of methods and tools for data management and analysis within data warehouses. With the rapidly increasing volume of data and the development of cloud technologies, companies face the challenge of navigating various methods to choose the most suitable one for their specific data management and analysis needs. The report highlights the One Big Table (OBT) method and the Data Build Tool (dbt), examining their advantages and disadvantages in data warehouse environments. To gain a deeper understanding of their functionality and efficiency, they are compared in different use cases through performance tests on latency and concurrency using the Hyperfine tool. OBT is implemented using Google BigQuery as well as Google Cloud SQL for PostgreSQL, where latency and concurrency for analytical purposes are evaluated using Python scripts with SQL queries and dbt models. The scripts and dbt models are run against BigQuery and PostgreSQL, both implementing OBT. The results show that the SQL scripts exhibited lower latency than the dbt models when executed against both BigQuery and PostgreSQL. Another finding is that the latency for SQL scripts was lower when run against PostgreSQL compared to BigQuery, while dbt models showed higher latency when run against PostgreSQL compared to BigQuery. The SQL scripts also performed better than the dbt models in concurrent executions in both BigQuery and PostgreSQL.
3

A comparative study of the Data Warehouse and Data Lakehouse architecture / En komparativ studie av Data Warehouse- och Data Lakehouse-arkitektur

Salqvist, Philip January 2024 (has links)
This thesis aimed to assess a given Data Warehouse against a well-suited Data Lakehouse in terms of read performance and scalability. Using the TPC-DS benchmark, these systems were tested with synthetic datasets reflecting the specific needs of a Decision Support (DSS) system. Moreover, this research aimed to determine whether certain categories of queries resulted in notably large discrepancies between the systems. This might help pinpoint the architectural differences that cause these discrepancies. Initial research identified BigQuery and Delta Lake as top candidates due to their exceptional read performance and scalability, prompting further investigation into both. The most significant latency difference was noted in the initial benchmark using a dataset scale of 2 GB, with BigQuery outperforming Delta Lake. As the dataset size grew, BigQuery’s latency increased by 336%, while Delta Lake’s went up by just 40%. However, BigQuery still maintained a significant overall lower latency across all scales. Detailed query analysis showed BigQuery excelling especially with complex queries, those involving extensive aggregation and multiple join operations, which have a high potential for generating large intermediate data during the shuffle stage. It was hypothesized that some of the read performance discrepancies could be attributed to BigQuery’s in-memory shuffling capability, whereas Delta Lake might spill intermediate data to the disk. Delta Lake’s hardware utilization metrics further supported this theory, displaying a trend where peaks in memory usage and disk write rate coincided with queries showing high discrepancies. Meanwhile, CPU utilization remained low. This pattern suggests an I/O-bound system rather than a CPU-bound one, possibly explaining the observed performance differences. Future studies are encouraged to explicitly monitor shuffle operations, aiming for a more rigorous correlation between high-discrepancy queries and data spillage during the shuffle phase. Further research should also include larger dataset sizes; this thesis was constrained to a maximum dataset size of 64 GB due to limited resources. / Denna uppsats undersökte ett givet Data Warehouse i jämförelse med ett lämpligt Data Lakehouse med fokus på läsprestanda och skalbarhet. Med hjälp av TPC-DS benchmark testades dessa system med syntetiska dataset som speglade kundens specifika behov. Vidare syftade forskningen till att avgöra om vissa kategorier av queries resulterade i märkbart stora skillnader mellan systemen. Detta för att identifiera de teknologiska aspekter hos systemen som orsakar dessa skillnader. Den inledande litteraturstudien identifierade BigQuery och Delta Lake som toppkandidater på grund av deras läsprestanda och skalbarhet, vilket ledde till ytterligare undersökning av båda. Den mest påtagliga skillnaden i latens noterades i den initiala jämförelsen med ett dataset av storleken 2 GB, där BigQuery presterade bättre än Delta Lake. När datamängden skalades upp, ökade BigQuery’s latens med 336%, medan Delta Lakes ökade med endast 40%. Dock bibehöll BigQuery en avsevärt lägre total latens för samtliga datamängder. Detaljerad analys visade att BigQuery presterade särskilt bra under komplexa queries som involverade omfattande aggregering och flera join-operationer, vilka har en hög potential för att generera stora datamängder under shuffle-fasen. Det antogs att skillnaderna i latens delvis kunde tillskrivas BigQuery’s in-memory shuffle-kapacitet, medan Delta Lake riskerade att spilla data till disk. Delta Lakes hårdvaruanvändning stödde denna teori ytterligare, där toppar i minnesanvändning och skrivhastighet till disk sammanföll med queries som visade höga skillnader, samtidigt som CPU-användningen förblev låg. Detta mönster tyder på ett I/O-bundet system snarare än ett CPU-bundet, vilket möjligen förklarar de observerade prestandaskillnaderna. Framtida studier uppmuntras att explicit övervaka shuffle-operationer, med målet att mer noggrant koppla queries som uppvisar stora skillnader med dataspill under shuffle-fasen. Ytterligare forskning bör också inkludera större datamängdstorlekar; denna avhandling var begränsad till en maximal datamängdstorlek på 64 GB på grund av begränsade resurser.
4

Machine Learning implementation for Stress-Detection

Madjar, Nicole, Lindblom, Filip January 2020 (has links)
This project is about trying to apply machine learning theories on a selection of data points in order to see if an improvement of current methodology within stress detection and measure selecting could be applicable for the company Linkura AB. Linkura AB is a medical technology company based in Linköping and handles among other things stress measuring for different companies employees, as well as health coaching for selecting measures. In this report we experiment with different methods and algorithms under the collective name of Unsupervised Learning, to identify visible patterns and behaviour of data points and further on we analyze it with the quantity of data received. The methods that have been practiced on during the project are “K-means algorithm” and a dynamic hierarchical clustering algorithm. The correlation between the different data points parameters is analyzed to optimize the resource consumption, also experiments with different number of parameters are tested and discussed with an expert in stress coaching. The results stated that both algorithms can create clusters for the risk groups, however, the dynamic clustering method clearly demonstrate the optimal number of clusters that should be used. Having consulted with mentors and health coaches regarding the analysis of the produced clusters, a conclusion that the dynamic hierarchical cluster algorithm gives more accurate clusters to represent risk groups were done. The conclusion of this project is that the machine learning algorithms that have been used, can categorize data points with stress behavioral correlations, which is usable in measure testimonials. Further research should be done with a greater set of data for a more optimal result, where this project can form the basis for the implementations. / Detta projekt handlar om att försöka applicera maskininlärningsmodeller på ett urval av datapunkter för att ta reda på huruvida en förbättring av nuvarande praxis inom stressdetektering och  åtgärdshantering kan vara applicerbart för företaget Linkura AB. Linkura AB är ett medicintekniskt företag baserat i Linköping och hanterar bland annat stressmätning hos andra företags anställda, samt hälso-coachning för att ta fram åtgärdspunkter för förbättring. I denna rapport experimenterar vi med olika metoder under samlingsnamnet oövervakad maskininlärning för att identifiera synbara mönster och beteenden inom datapunkter, och vidare analyseras detta i förhållande till den mängden data vi fått tillgodosett. De modeller som har använts under projektets gång har varit “K-Means algoritm” samt en dynamisk hierarkisk klustermodell. Korrelationen mellan olika datapunktsparametrar analyseras för att optimera resurshantering, samt experimentering med olika antal parametrar inkluderade i datan testas och diskuteras med expertis inom hälso-coachning. Resultaten påvisade att båda algoritmerna kan generera kluster för riskgrupper, men där den dynamiska modellen tydligt påvisar antalet kluster som ska användas för optimalt resultat. Efter konsultering med mentorer samt expertis inom hälso-coachning så drogs en slutsats om att den dynamiska modellen levererar tydligare riskkluster för att representera riskgrupper för stress. Slutsatsen för projektet blev att maskininlärningsmodeller kan kategorisera datapunkter med stressrelaterade korrelationer, vilket är användbart för åtgärdsbestämmelser. Framtida arbeten bör göras med ett större mängd data för mer optimerade resultat, där detta projekt kan ses som en grund för dessa implementeringar.

Page generated in 0.0411 seconds