• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular, cellular and regulatory characterization of cholesterol 7#alpha#-hydroxylase

Elderedge, Emelyn R. January 1989 (has links)
No description available.
2

Molecular characterization of peroxisomal multifunctional 2-enoyl-CoA hydratase 2/(3R)-hydroxyacyl-CoA dehydrogenase (MFE type 2) from mammals and yeast

Qin, Y.-M. (Yong-Mei) 24 June 1999 (has links)
Abstract Fatty acid degradation in living organisms occurs mainly via the β-oxidation pathway. When this work was started, it was known that the hydration and dehydrogenation reactions in mammalian peroxisomal β-oxidation were catalyzed by only multifunctional enzyme type 1 (MFE-1; Δ2-Δ3-enoyl-CoA isomerase/2-enoyl-CoA hydratase 1/(3S)-hydroxyacyl-CoA dehydrogenase) via the S-specific pathway, whereas in the yeast peroxisomes via the R-specific pathway by multifunctional enzyme type 2 (MFE-2; 2-enoyl-CoA hydratase 2/(3R)-hydroxyacyl-CoA dehydrogenase). The work started with the molecular cloning of the rat 2-enoy-CoA hydratase 2 (hydratase 2). The isolated cDNA (2205 bp) encodes a polypeptide with a predicted molecular mass of 79.3 kDa, which contains a potential peroxisomal targeting signal (AKL) in the carboxyl terminus. The hydratase 2 is an integral part of the cloned polypeptide, which is assigned to be a novel mammalian peroxisomal MFE-2. The physiological role of the mammalian hydratase 2 was investigated with the recombinant hydratase 2 domain derived from rat MFE-2. The protein hydrates a physiological intermediate (24E)-3α, 7α, 12α-trihydroxy-5β-cholest-24-enoyl-CoA to (24R, 25R)-3α, 7α, 12α, 24-tetrahydroxy-5β-cholestanoyl-CoA in bile acid synthesis. The sequence alignment of human MFE-2 with MFE-2(s) of different species reveals 12 conserved protic amino acid residues, which are potential candidates for catalysis of the hydratase 2. Each of these residues was replaced by alanine. Complementation of Saccharomyces cerevisiae fox-2 (devoid of endogenous MFE-2) with human MFE-2 provided a model system for examing the in vivo function of the variants. Two protic residues, Glu366 and Asp510, of the hydratase 2 domain of human MFE-2 have been identified and are proposed to act as a base and an acid in catalysis. Mammalian MFE-2 has a (3R)-hydroxyacyl-CoA dehydrogenase domain, whereas the yeast MFE-2 has two dehydrogenase domains, A and B. The present work, applying site-directed mutagenesis to dissect the two domains, shows that the growth rates of fox-2 cells expressing a single functional domain are lower than those of cells expressing S. cerevisiae MFE-2. Kinetic experiments with the purified proteins demonstrate that domain A is more active than domain B in catalysis of medium- and long-chain (3R)-hydroxyacyl-CoA, whereas domain B is solely responsible for metabolism of short-chain substrates. Both domains are required when yeast cells utilize fatty acids as the carbon source.
3

Retinoic acid related orphan nuclear receptor a (RORa) regulates diurnal rhythm and fasting induction of sterol 12a-hydroxylase (CYP8B1) in bile acid synthesis

Pathak, Preeti 29 July 2013 (has links)
No description available.
4

Transcriptional Activation of the Cholesterol 7α-Hydroxylase Gene (CYP7A) by Nuclear Hormone Receptors

Crestani, Maurizio, Sadeghpour, Azita, Stroup, Diane, Galli, Giovanni, Chiang, John Y.L. 01 November 1998 (has links)
The gene encoding cholesterol 7α-hydroxylase (CYP7A), the rate-limiting enzyme in bile acid synthesis, is transcriptionally regulated by bile acids and hormones. Previously, we have identified two bile acid response elements (BARE) in the promoter of the CYP7A gene. The BARE II is located in nt - 149/-118 region and contains three hormone response element (HRE)-like sequences that form two overlapping nuclear receptor binding sites. One is a direct repeat separated by one nucleotide DR1 (-146-TGGACTtAGTTCA-134) and the other is a direct repeat separated by five nucleotides DR5 (-139- AGTTCAaggccGGGTAA-123). Mutagenesis of these HRE sequences resulted in lower transcriptional activity of the CYP7A promoter/reporter genes in transient transfection assay in HepG2 cells. The orphan nuclear receptor, hepatocyte nuclear factor 4 (HNF-4)1, binds to the DR1 sequence as assessed by electrophoretic mobility shift assay, and activates the CYP7A promoter/reporter activity by about 9-fold. Cotransfection of HNF-4 plasmid with another orphan nuclear receptor, chicken ovalbumin upstream promoter- transcription factor II (COUP-TFII), synergistically activated the CYP7A transcription by 80-fold. The DR5 binds the RXR/RAR heterodimer. A hepatocyte nuclear factor-3 (HNF-3) binding site (-175-TGTTTGTTCT-166) was identified. HNF-3 was required for both basal transcriptional activity and stimulation of the rat CYP7A promoter activity by retinoic acid. Combinatorial interactions and binding of these transcription factors to BAREs may modulate the promoter activity and also mediate bile acid repression of CYP7A gene transcription.

Page generated in 0.0764 seconds