• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The mechanism of lactogen receptor binding by human prolactin

Sivaprasad, Umasundari 07 August 2003 (has links)
No description available.
12

Charakterizace glutamátkarboxypeptidasy II, jejích blízkých homologů a jejich interakcí s ligandy / Characterization of Glutamate Carboxypeptidase II, its Close Homologs and their Interaction with Ligands

Tykvart, Jan January 2015 (has links)
Cancer, group of diseases characterized by an uncontrolled cell growth, represents one of the great challenges of modern clinical research. Currently, the standard treatment of the cancer disease relies mainly on the whole body exposition to various factors, which targets the dividing cells, combined with surgical resection of the tumor. Unfortunately, this treatment is sometimes accompanied by numerous severe side-effects (e.g., nausea, loss of hair, infertility etc.). Therefore, in the past 40 years enormous resources and effort have been invested into finding a way how to specifically target and destroy the cancerous cells. This goal has been primarily addressed by the search for molecules, mainly proteins, which are predominantly expressed in the cancerous tissues compared to the healthy cells. Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), represents such a target since it is highly expressed in a prostate carcinoma as well as in a solid tumor neovasculature. Additionally, GCPII is widely used as a model target molecule for proof-of-principle studies on targeted drug delivery. GCPII thorough biochemical characterization is essential for its appropriate use. Therefore, our laboratory has been investigating GCPII from various perspectives for more...
13

Simulações computacionais de desenovelamento de proteína e complexação de ligantes com amostragem aumentada / Computer simulations of protein unfolding and ligand binding with enhanced sampling

Alves, Ariane Ferreira Nunes 23 November 2017 (has links)
Simulações moleculares podem fornecer informações e detalhes mecanísticos que são difíceis de obter de experimentos. No entanto, fenômenos bioquímicos como formação de complexos proteína-ligante e desenovelamento de proteína são lentos e difíceis de amostrar na escala de tempo geralmente atingida por simulações de dinâmica molecular (MD) convencionais. Esses fenômenos moleculares foram estudados aqui pela combinação de simulações de MD com diversos métodos e aproximações para aumentar a amostragem configuracional: método de energia de interação linear (LIE), a aproximação de ensemble ponderado (WE) e dinâmica molecular dirigida (SMD). Uma equação foi parametrizada para prever afinidades entre pequenas moléculas e proteínas baseada na aproximação LIE, que foca a amostragem computacional nos estados complexado e não-complexado do ligante. A flexibilidade proteica foi introduzida usando ensembles de configurações obtidos de simulações de MD. Diferentes esquemas de média foram testados para obter afinidades totais de complexos proteína-ligante, revelando que muitas configurações de complexo contribuem para as afinidades de proteínas flexíveis, enquanto as afinidades de proteínas rígidas são dominadas por uma configuração de complexo. O mutante L99A da lisozima T4 (T4L) é provavelmente a proteína mais frequentemente usada para estudar complexação de ligantes. Estruturas cristalográficas mostram que a cavidade de ligação artificial criada pela mutação é pouco acessível, portanto movimentos proteicos ou uma respiração conformacional são necessários para permitir a entrada e saída de ligantes. Simulações de MD foram combinadas aqui com a aproximação de WE para aumentar a amostragem de eventos infrequentes de saída do benzeno de T4L. Quatro possíveis caminhos foram encontrados e movimentações de alfa-hélices e cadeias laterais envolvidas na saída do ligante foram caracterizadas. Os quatro caminhos correspondem a túneis da proteína previamente observados em simulações de MD longas de T4L apo, sugerindo que a heterogeneidade de caminhos ao longo de túneis intrínsecos é explorada por pequenas moléculas para sair de cavidades de ligação enterradas em proteínas. Experimentos de microscopia de força atômica revelaram informações detalhadas do desenovelamento forçado e da estabilidade mecânica da rubredoxina, uma proteína ferro-enxofre simples. O desenovelamento completo da rubredoxina envolve a ruptura de ligações covalentes. Portanto, o processo de desenovelamento foi simulado aqui por simulações de SMD acopladas a uma descrição clássica da dissociação de ligações. A amostragem de eventos de desenovelamento forçado foi aumentada pelo uso de velocidades rápidas de esticamento. Os resultados foram analisados usando um modelo teórico válido para regimes de desenovelamento forçado lentos e rápidos. As simulações revelaram que mudanças no ponto de aplicação de força ao longo da sequência da rubredoxina levam a diferentes mecanismos de desenovelamento, caracterizados por variáveis graus de rompimento de ligações de hidrogênio e estrutura secundária da proteína. / Molecular simulations may provide information and mechanistic insights that are difficult to obtain from experiments. However, biochemical phenomena such as ligand-protein binding and protein unfolding are slow and hard to sample on the timescales usually reached by conventional molecular dynamics (MD) simulations. These molecular phenomena were studied here by combining MD simulations with several methods or approximations to enhance configurational sampling: linear interaction energy (LIE) method, weighted ensemble (WE) approach and steered molecular dynamics (SMD). An equation was parametrized to predict affinities between small molecules and proteins based on the LIE approximation, which focus computational sampling in ligand bound and unbound states. Protein flexibility was introduced by using ensembles of configurations obtained from MD simulations. Different averaging schemes were tested to obtain overall affinities for ligand-protein complexes, revealing that many bound configurations contribute to affinities for flexible proteins, while affinities for rigid proteins are dominated by one bound configuration. T4 lysozyme (T4L) L99A mutant is probably the protein most often used to study ligand binding. Crystal structures show the artificial binding cavity created by the mutation has low accessibility, so protein movements or conformational breathing are necessary to allow the entry and egress of ligands. MD simulations were combined here with the WE approach to enhance sampling of infrequent benzene unbinding events from T4L. Four possible pathways were found and motions on alpha-helices and side chains involved in ligand egress were characterized. The four pathways correspond to protein tunnels previously observed in long MD simulations of apo T4L, suggesting that pathway heterogeneity along intrinsic tunnels is explored by small molecules to egress from binding cavities buried in proteins. Previous atomic force microscopy experiments revealed detailed information on the forced unfolding and mechanical stability of rubredoxin, a simple iron-sulfur protein. Complete unfolding of rubredoxin involves rupture of covalent bonds. Thus, the unfolding process was simulated here by SMD simulations coupled to a classical description of bond dissociation. Sampling of forced unfolding events was increased by using fast pulling velocities. Results were analyzed using a theoretical model valid for both slow and fast forced unfolding regimes. Simulations revealed that changing the points of force application along the rubredoxin sequence leads to different unfolding mechanisms, characterized by variable degrees of disruption of hydrogen bonds and secondary protein structure.
14

Methods for Detection of Small Molecule-Protein Interactions

January 2015 (has links)
abstract: Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described. First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection. Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules. Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell. Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
15

Simulações computacionais de desenovelamento de proteína e complexação de ligantes com amostragem aumentada / Computer simulations of protein unfolding and ligand binding with enhanced sampling

Ariane Ferreira Nunes Alves 23 November 2017 (has links)
Simulações moleculares podem fornecer informações e detalhes mecanísticos que são difíceis de obter de experimentos. No entanto, fenômenos bioquímicos como formação de complexos proteína-ligante e desenovelamento de proteína são lentos e difíceis de amostrar na escala de tempo geralmente atingida por simulações de dinâmica molecular (MD) convencionais. Esses fenômenos moleculares foram estudados aqui pela combinação de simulações de MD com diversos métodos e aproximações para aumentar a amostragem configuracional: método de energia de interação linear (LIE), a aproximação de ensemble ponderado (WE) e dinâmica molecular dirigida (SMD). Uma equação foi parametrizada para prever afinidades entre pequenas moléculas e proteínas baseada na aproximação LIE, que foca a amostragem computacional nos estados complexado e não-complexado do ligante. A flexibilidade proteica foi introduzida usando ensembles de configurações obtidos de simulações de MD. Diferentes esquemas de média foram testados para obter afinidades totais de complexos proteína-ligante, revelando que muitas configurações de complexo contribuem para as afinidades de proteínas flexíveis, enquanto as afinidades de proteínas rígidas são dominadas por uma configuração de complexo. O mutante L99A da lisozima T4 (T4L) é provavelmente a proteína mais frequentemente usada para estudar complexação de ligantes. Estruturas cristalográficas mostram que a cavidade de ligação artificial criada pela mutação é pouco acessível, portanto movimentos proteicos ou uma respiração conformacional são necessários para permitir a entrada e saída de ligantes. Simulações de MD foram combinadas aqui com a aproximação de WE para aumentar a amostragem de eventos infrequentes de saída do benzeno de T4L. Quatro possíveis caminhos foram encontrados e movimentações de alfa-hélices e cadeias laterais envolvidas na saída do ligante foram caracterizadas. Os quatro caminhos correspondem a túneis da proteína previamente observados em simulações de MD longas de T4L apo, sugerindo que a heterogeneidade de caminhos ao longo de túneis intrínsecos é explorada por pequenas moléculas para sair de cavidades de ligação enterradas em proteínas. Experimentos de microscopia de força atômica revelaram informações detalhadas do desenovelamento forçado e da estabilidade mecânica da rubredoxina, uma proteína ferro-enxofre simples. O desenovelamento completo da rubredoxina envolve a ruptura de ligações covalentes. Portanto, o processo de desenovelamento foi simulado aqui por simulações de SMD acopladas a uma descrição clássica da dissociação de ligações. A amostragem de eventos de desenovelamento forçado foi aumentada pelo uso de velocidades rápidas de esticamento. Os resultados foram analisados usando um modelo teórico válido para regimes de desenovelamento forçado lentos e rápidos. As simulações revelaram que mudanças no ponto de aplicação de força ao longo da sequência da rubredoxina levam a diferentes mecanismos de desenovelamento, caracterizados por variáveis graus de rompimento de ligações de hidrogênio e estrutura secundária da proteína. / Molecular simulations may provide information and mechanistic insights that are difficult to obtain from experiments. However, biochemical phenomena such as ligand-protein binding and protein unfolding are slow and hard to sample on the timescales usually reached by conventional molecular dynamics (MD) simulations. These molecular phenomena were studied here by combining MD simulations with several methods or approximations to enhance configurational sampling: linear interaction energy (LIE) method, weighted ensemble (WE) approach and steered molecular dynamics (SMD). An equation was parametrized to predict affinities between small molecules and proteins based on the LIE approximation, which focus computational sampling in ligand bound and unbound states. Protein flexibility was introduced by using ensembles of configurations obtained from MD simulations. Different averaging schemes were tested to obtain overall affinities for ligand-protein complexes, revealing that many bound configurations contribute to affinities for flexible proteins, while affinities for rigid proteins are dominated by one bound configuration. T4 lysozyme (T4L) L99A mutant is probably the protein most often used to study ligand binding. Crystal structures show the artificial binding cavity created by the mutation has low accessibility, so protein movements or conformational breathing are necessary to allow the entry and egress of ligands. MD simulations were combined here with the WE approach to enhance sampling of infrequent benzene unbinding events from T4L. Four possible pathways were found and motions on alpha-helices and side chains involved in ligand egress were characterized. The four pathways correspond to protein tunnels previously observed in long MD simulations of apo T4L, suggesting that pathway heterogeneity along intrinsic tunnels is explored by small molecules to egress from binding cavities buried in proteins. Previous atomic force microscopy experiments revealed detailed information on the forced unfolding and mechanical stability of rubredoxin, a simple iron-sulfur protein. Complete unfolding of rubredoxin involves rupture of covalent bonds. Thus, the unfolding process was simulated here by SMD simulations coupled to a classical description of bond dissociation. Sampling of forced unfolding events was increased by using fast pulling velocities. Results were analyzed using a theoretical model valid for both slow and fast forced unfolding regimes. Simulations revealed that changing the points of force application along the rubredoxin sequence leads to different unfolding mechanisms, characterized by variable degrees of disruption of hydrogen bonds and secondary protein structure.
16

Studies in Antigen Presentation and Antigen Recognition at Different Interfaces of the Adaptive Immune System

Negroni, Maria P. 03 July 2018 (has links)
Antigen presentation and recognition are key processes of the immune system necessary to initiate the adaptive immune response. Longstanding goals of these fields have been to understand the molecular mechanism of MHC II-peptide binding, the way in which dysregulation of this process can lead to disease, and determining how γδTCRs recognize their ligands. To examine some of these outstanding questions, I designed photocleavable peptides that could bind HLA-DR1 and could be used to facilitate peptide exchange. I also performed studies to understand whether peptide exchange on HLA-DR1 can be affected by glycation modifications, which occur in hyperglycemic conditions such as diabetes. I observed that while glycation modifications on HLA-DR1 did not affect peptide exchange, these modifications decreased the catalytic effect of HLA-DM on this reaction, which could affect antigen presentation in diabetic patients. For studies on antigen recognition by γδTCRs, I focused on γδNKT cells, a subset of γδT cells known to play a role during Listeria infection. I used four different variants of the γδNKT TCR to study the restrictions on Vγ junctional region usage by this TCR for ligand recognition. I found that all the TCR variants I examined could recognize cells infected with Listeria, indicating that this TCR is not restricted by γ-chain usage in order to recognize ligand. My research generated reagents that could serve in future studies of HLA-DR1 peptide binding and contributed to understanding the effect of hyperglycemic conditions on antigen presentation, as well as provided greater understanding of γδTCR restriction for ligand recognition.
17

THE BIOLOGICAL, STRUCTURAL AND KINETIC PROPERTIES OF PROLACTIN, PROLACTIN RECEPTOR ANTAGONISTS, GROWTH HORMONE AND THE PROLACTIN RECEPTOR

Gordon, Timothy Jason 06 August 2013 (has links)
No description available.
18

Investigation of SH2 Domains: Ligand Binding, Structure and Inhibitor Design

Zhang, Yanyan January 2009 (has links)
No description available.
19

Etude cinétique de la liaison élémentaire entre Annexine-A5 et membranes et mise au point d’un test de quantification des microparticules plasmatiques pro-coagulantes, par cytométrie en flux / Kinetics of Annexin-A5 binding to model membranes studied by Flow Cytometry and development of a new method for quantifying Plasmatic Microparticles

Arraud, Nicolas 19 December 2011 (has links)
L’Annexine A5 (AnxA5) est une protéine soluble se liant aux membranes contenant de la phosphatidylsérine (PS) en présence de calcium (Ca2+). Le rôle central joué par l’AnxA5 dans les processus de réparation membranaire a été récemment mis en évidence. L’AnxA5 possède une très forte affinité pour les membranes biologiques contenant de la PS, cependant son mode de liaison aux membranes n’est pas encore élucidé.La première partie de mon travail de thèse a concerné le développement d’une approche originale d’étude de la liaison de l’AnxA5 à des microsphères de silice fonctionnalisées par une bicouche lipidique (µPSiO2@SLB pour supported lipid bilayer), par cytométrie en flux (FCM). Cette approche m’a permis d’étudier la liaison à l’équilibre et en cinétique à très faible concentration en AnxA5, de l’ordre du picomolaire. Cette approche représente une des méthodes les plus sensibles d’étude de liaison à l’équilibre et la première permettant d’accéder aux constantes cinétiques d’interaction pour l’AnxA5. Cette étude m’a également permis de mettre au point une stratégie de dosage indirect de liposomes contenant de la PS avec une sensibilité de l’ordre du nanogramme de lipides par millilitre.La seconde partie de ma thèse a concerné l’étude de microparticules (MP), fragments de membranes cellulaires présents dans les fluides biologiques. Dans le plasma sanguin la majorité des MP sont d’origine plaquettaire et exposent de la PS. Il existe une corrélation entre la concentration en MP plasmatiques exposant de la PS et le développement de pathologies thrombotiques. La FCM est la méthode de référence dans l’étude des MP cependant leur détection est rendue difficile par leur petite taille. J’ai appliqué aux MP plasmatiques le test de dosage développé pour les liposomes. Les résultats obtenus sont prometteurs et permettent d’envisager le développement d’un test de dosage de l’ensemble des MP exposant de la PS. / Annexin-A5 (AnxA5) is a soluble membrane binding protein that binds to phosphatidylserine (PS) containing membranes in a calcium dependent manner and plays a central role in cell membrane repair processes. AnxA5 has a remarkably high affinity for PS containing membranes, but its binding mechanism remains unclear.The first part of my PhD work was to develop a new method for studying AnxA5 binding using supported lipid bilayer functionalized silica microspheres (µPSiO2@SLB) and Flow Cytometry (FCM). This approach allowed me to describe in details both equilibrium and kinetics of AnxA5 binding at picomolar concentrations in AnxA5. This study is one of the most sensitive for equilibrium binding studies and the first allowing to measure binding kinetics constants for AnxA5. This study also led to the development of a new strategy for determination of liposome concentration with sensitivity in the range of one nanogram of lipid per milliliter. The second part of my work focused on microparticles (MP) that are cell membrane fragments found in biological fluids. In plasma, the vast majority of MP originates from platelets and expresses PS at their surface. There is a correlation between MP concentration in plasma and thrombotic risk. FCM is the “golden standard” of hæmatologic analysis but the majority of MPs are too small to be detected. I have applied the test developed with liposomes for the quantification of MP. The results are promising and allow foreseeing the development of a test able to give the absolute quantity of PS exposing MPs in plasma samples.
20

Engineering post-transcriptional regulation of gene expression with RNA-binding proteins

Dolcemascolo, Roswitha 23 January 2024 (has links)
[ES] La biología sintética tiene como objetivo diseñar y construir nuevos sistemas biológicos con funciones deseadas. Los circuitos basados en el control transcripcional han tenido preponderancia en este campo tras el trabajo pionero del toggle switch y del repressilator. Sin embargo, para avanzar en la creación de tecnologías transformadoras que utilicen circuitos genéticos sintéticos, es esencial una combinación de mecanismos de control confiables en todo el flujo de la información genética. Esta combinación es necesaria para alcanzar el nivel de integrabilidad y complejidad funcional observado en la naturaleza. En tal sentido, recientemente han ganado atención los circuitos basados en regulación postranscripcional. En particular, se ha aprovechado la gran programabilidad de ARN para crear circuitos reguladores para la biodetección de señales ambientales o para controlar la vía metabólica en la bioproducción. En esta tesis, por el contrario, proponemos explotar las proteínas de unión a ARN para diseñar circuitos sintéticos que operen a nivel de traducción en la bacteria Escherichia coli. Esta tesis pretende estudiar como surge y se propaga el ruido cuando la expresión genética está regulada por un factor de traducción, y la ampliación de la caja de herramientas de la biología sintética con una nueva caracterización de proteínas de unión a ARN adecuadas. Por un lado, hemos diseñado un circuito de control postrancripcional utilizando la proteína de cápside del fago MS2. Mediante una meticulosa monitorización a nivel unicelular tanto del regulador como del gen regulado, hemos cuantificado el comportamiento dinámico del sistema, así como su estocasticidad. Si bien los esfuerzos anteriores se centraron en comprender la propagación del ruido en las regulaciones transcripcionales, el comportamiento estocástico de los genes regulados a nivel de la traducción sigue siendo en gran medida desconocido. Nuestros datos han revelado que un factor de traducción de proteínas ha permitido una fuerte represión a nivel unicelular, ha amortiguado la propagación del ruido de un gen a otro y ha conducido a una sensibilidad no lineal a las perturbaciones globales en la traducción. Estos descubrimientos han mejorado significativamente nuestra comprensión de la expresión genética estocástica y han proporcionado principios de diseño fundamentales para aplicaciones de biología sintéticas. Por otro lado, aprovechamos el motivo de reconocimiento de ARN (RRM), el dominio proteico de unión a ARN mas prevalente en la naturaleza, a pesar de su predominio en los filos eucariotas, para diseñar un sistema de control postranscripcional ortogonal en Escherichia coli. Aprovechando la proteína de unión a ARN de mamífero Musashi-1, que contiene dos RRM canónicos, desarrollamos un circuito sofisticado. Musashi-1 ha funcionado como represor de la traducción alostérico a través de su interacción especifica con la región codificante N-terminal del ARN mensajero, mostrando capacidad de respuesta a los ácidos grasos. La caracterización integral tanto a nivel poblacional como unicelular ha destacado un cambio significativo en la expresión del reportero. Se obtuvieron conocimientos moleculares a través de la cinética de unión in vitro y evaluaciones de funcionalidad in vivo de una serie de mutantes de ARN. Este trabajo ha mostrado la adaptabilidad de la regulación basada en RRM a organismos mas simples, introduciendo una nueva capa regulatoria para el control de la traducción en procariotas y, en ultima instancia, ampliando los horizontes de la manipulación genética. / [CA] La biologia sintètica té per objectiu dissenyar i construir nous sistemes biològics amb funcions desitjades. Els circuits basats en el control transcripcional han tingut preponderancia en aquest camp després del treball pioner del toggle switch i del repressilator. Tot i això, per avançar en la creació de tecnologies transformadres que utilitzin circuits genètics sintètics, és esencial una combinació de mecanismes de control fiables en tot el flux de la información genètica. Aquesta combinació és necessària per assolir el nivel d'integrabilitat i complexitat funcional observat a la natura. En aquest sentit, recentement han guanyat atenció els circuits basats en regulació posttranscripcional. En particular, s'ha aprofitat la gran programabilitat d'ARN per crear circuits reguladors per a la biodetecció de senyals ambientals o per controlar la via metabólica a la bioproducció. En aquesta tesi, per contra, proposem exlotar les proteïnes d'unió a ARN per dissenyar circuits sintètics que operin a nivel de traducció al bacteri Escherichia coli. Aquesta tesi pretén estudiar com sorgeix i es propaga el soroll quan l'expressió genètica està regulada per un factor de traducció, il'ampliació de la caixa d'eines de la biología sintètica amb una nova caracteriació de proteïnes d'unió a ARN adequades. D'una banda, hem dissenyat un circuit de control postranscripcional utilitzant la proteína de càpsid del fag MS2. Mitjançant una meticulosa monitorització a nivel inucel·lular tant del regulador com del gen regulat, hem quantificat el comportament dinàmic del sistema, així com la seva estocasticitat. Tot i que els esforços anteriors es van centrar a comprendre la propagació del soroll en les regulacions transcripcionals, el comportament estocàstic dels gens regulats a nivell de la traducció continua sent en gran mesura desonegut. Les nostres dades han revelat que un factor de traducció de proteïnes ha permès una forta repressió a nivell unicel·lular, ha esmorteït la propagació del soroll d'un gen a un altre i ha conduït a una sensibilitat no lineal a les pertorbacions globals a la traducció. Aquest descobriments han millorat significativament la nostra comprensió de l'expressió genètica estocástica i han proporcionat principis de sisseny fonamentals per a aplicacions de biología sintètiques. D'altra banda, aprofitem el motiu de reconeixement d'ARN (RRM), el domini proteic d'unió a ARN més prevalent a la natura, malgrat el seu predomini als talls eucariotes, per dissenyar un sistema de control posttranscripcional ortogonal a Escherichia coli. Aprofitant la proteína d'unió a ARN de mamífers Musashi-1, que conté dos RRM canònics, hem desenvolupat un circuit sofisticat. Musashi-1 va funcionar com un repressor de la traducció al·lostèric a través de la seva interacció específica amb la regió codificant N-terminal de l'ARN missatger, mostrant capacitat de resposta als àcids grassos. La caracterització integral tant a nivel poblacional com unicèl·lular va destacar un canvi significatiu a l'expressió de l'informador. S'obtingueren coneixements moleculars a través de la cinètica d'unió in vitro i avaluacions de funcionalitat in vivo d'una sèrie de mutants d'ARN. Aquest treball va mostrar l'adaptabilitat de la regulació basada en RRM a organismos més simples, introduint una nova capa regulatòria per al control de la traducció en procariotes i, en darrer terme, ampliant els horitzons de la manipulació genètica. / [EN] Synthetic biology seeks to design and construct new biological systems with desired functions. Circuits based on transcriptional control have been preponderant in the field following the pioneering work of the toggle switch and repressilator. However, to advance the creation of transformative technologies using synthetic genetic circuits, a blend of dependable control mechanisms throughout the genetic information flow is essential. This combination is necessary to attain the level of integrability and functional complexity observed in nature. In this regard, circuits based on post-transcriptional regulation have recently gained attention. In particular, the great programmability of RNA has been exploited to create regulatory circuits for biosensing of environmental signals or for controlling metabolic pathway in bioproduction. In this thesis, in contrast, we propose to exploit RNA-binding proteins to engineer synthetic circuits that operate at the level of translation in the bacterium Escherichia coli. This thesis intends to study how noise emerges and propagates when gene expression is regulated by a translation factor, and the expansion of the synthetic biology toolbox with new characterization of suitable RNA-binding proteins. On the one hand, we engineered a post-transcriptional control circuit using the phage MS2 coat protein. Through meticulous single-cell level monitoring of both the regulator and the regulated gene, we quantified the dynamic behavior of the system, as well as their stochasticity. While previous efforts focused on understanding noise propagation in transcriptional regulations, the stochastic behavior of genes regulated at the translation level remain largely unknown. Our data revealed that a protein translation factor enabled strong repression at the single-cell level, buffered noise propagation from gene to gene, and led to a nonlinear sensitivity to global perturbations in translation. These findings significantly enhanced our understanding of stochastic gene expression and provided foundational design principles for synthetic biology applications. On the other hand, we harnessed the RNA recognition motif (RRM), the most prevalent RNA-binding domain in nature, despite its predominance in eukaryotic phyla, to engineer an orthogonal post-transcriptional control system in Escherichia coli. Leveraging the mammalian RNA-binding protein Musashi-1, which contains two canonical RRMs, we developed a sophisticated circuit. Musashi-1 functioned as an allosteric translation repressor through its specific interactions with the N-terminal coding region of messenger RNA, exhibiting responsiveness to fatty acids. Comprehensive characterization at both population and single-cell levels highlighted a significant fold change in reporter expression. Molecular insights were gleaned through in vitro binding kinetics and in vivo functionality assessments of a series of RNA mutants. This work showcased the adaptability of RRM-based regulation to simpler organisms, introducing a novel regulatory layer for translation control in prokaryotes, ultimately expanding the horizons of genetic manipulation. / Dolcemascolo, R. (2023). Engineering post-transcriptional regulation of gene expression with RNA-binding proteins [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202194

Page generated in 0.1236 seconds