• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Complex Biocatalysis in Aqueous Solution. Part I: Efforts Towards a Biophysical Perspective of the Cellulosome; Part II: Experimental Determination of Methonium Desolvation Thermodynamics

King, Jason Ryan January 2014 (has links)
<p>The intricate interplay of biomolecules acting together, rather than alone, provides insight into the most basic of cellular functions, such as cell signaling, metabolism, defense, and, ultimately, the creation of life. Inherent in each of these processes is an evolutionary tendency towards increased efficiency by means of biolgocial synergy-- the ability of individual elements of a system to produce a combined effect that is different and often greater than the sum of the effects of the parts. Modern biochemists are challenged to find model systems to characterize biological synergy.</p><p>We discuss the multicomponent, enzyme complex the cellulosome as a model system of biological synergy. Native cellulosomes comprise numerous carbohydrate-active binding proteins and enzymes designed for the efficient degradation of plant cell wall matrix polysaccharides, namely cellulose. Cellulosomes are modular enzyme complexes, comparable to enzyme "legos" that may be readily constructed into multiple geometries by synthetic design. Cellulosomal enzymes provide means to measure protein efficiency with altered complex geometry through assay of enzymatic activity as a function of geometry.</p><p>Cellulosomes are known to be highly efficient at cellulose depolymerization, and current debates on the molecular origins of this efficiency suggest two related effects provide this efficiency: i) substrate targeting, which argues that the localization of the enzyme complex at the interface of insoluble cell wall polysaccharides facilitates substrate depolymerization; and ii) proximity effects, which describe the implicit benefit for co-localizing multiple enzymes with divergent substrate preferences on the activity of the whole complex.</p><p>Substrate targeting can be traced to the activity of a single protein, the cellulosomal scaffoldin cellulose binding module CBM3a that is thought to uniquely bind highly crystalline, insoluble cellulose. We introduce methods to develop a molecular understanding of the substrate preferences for CBM3a on soluble and insoluble cellulosic substrates. Using pivaloylysis of cellulose triacetate, we obtain multiple soluble cello-oligosaccharides with increasing degree of glucose polymerization (DP) from glucose (DP1) to cellodecaose (DP10) in high yield. Using calorimetry and centrifugal titrations, cello-oligosacharides were shown to not bind Clostridial cellulolyticum CMB3a. We developed AFM cantilever functionalization protocols to immobilize CBM3a and then probe the interfacial binding between CBM3a and a cellulose nanocrystal thin film using force spectroscopy. Specific binding at the interface was demonstrated in reference to a control protein that does not bind cellulose. The results indicate that i) CBM3a specifically binds nanocrystalline cellulose and ii) specific interfacial binding may be probed by force spectroscopy with the proper introduction of controls and blocking agents.</p><p>The question of enzyme proximity effects in the cellulosome must be answered by assaying the activity of cellulosomal cellulases in response to cellulosome geometry. The kinetic characterization of cellulases requires robust and reproducible assays to quantify functional cellulase content of from recombinant enzyme preparations. To facilitate the real-time routine assay of cellulase activity, we developed a custom synthesis of a fluorogenic cellulase substrate based on the cellohexaoside of Driguez and co-workers (vide infra). Two routes to synthesize a key thiophenyl glycoside building block were presented, with the more concise route providing the disaccharide in four steps from a commercial starting material. The disaccharide building blocks were coupled by chemical activation to yield the fully protected cellohexaoside over additional six steps. Future work will include the elaboration of this compound into an underivatized FRET-paired hexasaccharide and its subsequent use in cellulase activity assays.</p><p>This dissertation also covers an experimental system for the evaluation of methonium desolvation thermodynamics. Methonium (-N+Me3, Am) is an organic cation widely distributed in biological systems. The appearance of methonium in biological transmitters and receptors seems at odds with the large unfavorable desolvation free energy reported for tetramethylammonium (TMA+), a frequently utilized surrogate of methonium. We report an experimental system that facilitates incremental internalization of methonium within the molecular cavity of cucurbit[7]uril (CB[7]).</p><p>Using a combination of experimental and computational studies we show that the transfer of methonium from bulk water to the CB[7] cavity is accompanied by a remarkably small desolvation enthalpy of just 0.5±0.3 kcal*mol-1, a value significantly less endothermic than those values suggested from gas-phase model studies (+49.3 kcal*mol-1). More surprisingly, the incremental withdrawal of methonium surface from water produces a non- monotonic response in desolvation enthalpy. A partially desolvated state exists, in which a portion of the methonium group remains exposed to solvent. This structure incurs an increased enthalpic penalty of ~3 kcal*mol-1 compared to other solvation states. We attribute this observation to the pre- encapsulation de-wetting of the methonium surface. Together, our results offer a rationale for the wide biological distribution of methonium and suggest limitations to computational estimates of binding affinities based on simple parameterization of solvent-accessible surface area.</p> / Dissertation
2

Structural and thermodynamical basis for molecular recognition between engineered binding proteins

Dogan, Jakob January 2006 (has links)
The structural determination of interacting proteins, both as individual proteins and in their complex, complemented by thermodynamical studies are vital in order to gain in-depth insights of the phenomena leading to the highly selective protein-protein interactions characteristic of numerous life processes. This thesis describes an investigation of the structural and thermodynamical basis for molecular recognition in two different protein-protein complexes, formed between so-called affibody proteins and their respective targets. Affibody proteins are a class of engineered binding proteins, which can be functionally selected for binding to a given target protein from large collections (libraries) constructed via combinatorial engineering of 13 surface-located positions of the 58-residue three-helix bundle Z domain derived from Staphylococcal protein (SPA). In a first study, an affibody:target protein pair consisting of the ZSPA-1 affibody and the parental Z domain, with a dissociation constant (Kd) of approximately 1 µM, was investigated. ZSPA-1 was in its free state shown to display molten globule-like characteristics. The enthalpy change on binding between Z and ZSPA-1 as measured by isothermal titration calorimetry, was found to be a non-linear function of temperature. This nonlinearity was found to be due to the temperature dependent folded-unfolded equilibrium of ZSPA-1 upon binding to the Z domain and, the energetics of the unfolding equilibrium of the molten globule state of ZSPA-1 could be separated from the binding thermodynamics. Further dissection of the binding entropy revealed that a significant reduction in conformational entropy resulting from the stabilization of the molten globule state of ZSPA-1 upon complex formation could be a major reason for the moderate binding affinity. A second studied affibody:target complex (Kd ~ 0.1 µM) consisted of the ZTaq affibody protein originally selected for binding to Taq DNA polymerase and the anti-ZTaq affibody protein, selected for selective binding to the ZTaq affibody protein, thus constituting an "anti-idiotypic" affinity protein pair. The structure of the ZTaq:anti-ZTaq affibody complex as well as the free state structures of ZTaq and anti-ZTaq were determined using NMR spectroscopy. Both ZTaq and anti-ZTaq are well defined three helix bundles in their free state and do not display the same molten globule-like behaviour of ZSPA-1. The interaction surface was found to involve all of the varied positions in helices 1 and 2 of the anti-ZTaq, the majority of the corresponding side chains in ZTaq, and also several non-mutated residues. The total buried surface area was determined to about 1670 Å2 which is well inside the range of what is typical for many protein-protein complexes, including antibody:antigen complexes. Structural rearrangements, primarily at the side chain level, were observed to take place upon binding. There are similarities between the ZTaq:anti-ZTaq and the Z:ZSPA-1 structure, for instance, the binding interface area in both complexes has a large fraction of non-polar content, the buried surface area is of similar size, and certain residues have the same positioning. However, the relative orientation between the subunits in ZTaq:anti-ZTaq is markedly different from that observed in Z:ZSPA-1. The thermodynamics of ZTaq:anti-ZTaq association were investigated by isothermal titration calorimetry. A dissection of the entropic contributions showed that a large and favourable desolvation entropy of non-polar surface is associated with the binding reaction which is in good agreement with hydrophobic nature of the binding interface, but as in the case for the Z:ZSPA-1 complex a significant loss in conformational entropy opposes complex formation. A comparison with complexes involving affibody proteins or SPA domains suggests that affibody proteins inherit intrinsic binding properties from the original SPA surface. The structural and biophysical data suggest that although extensive mutations are carried out in the Z domain to obtain affibody proteins, this does not necessarily affect the structural integrity or lead to a significant destabilization. / QC 20110118
3

Molecular principles of protein stability and protein-protein interactions

Lendel, Christofer January 2005 (has links)
<p>Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the Z<sub>SPA-1</sub> affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: Z<sub>Taq</sub>, originally selected to bind Taq DNA polymerase, and anti-Z<sub>Taq</sub>, an anti-idiotypic binder to Z<sub>Taq</sub> with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free Z<sub>SPA-1</sub> affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å<sup>2</sup> total surface area and 10 out of 13 varied residues in Z<sub>SPA-1</sub> are directly involved in inter-molecular contacts. Further characterization of the molten globule state of Z<sub>SPA-1</sub> revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free Z<sub>SPA-1</sub> affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of Z<sub>SPA-1</sub> upon binding seriously reduces the binding affinity. The Z<sub>Taq</sub>:anti-Z<sub>Taq</sub> complex buries in total 1672 Å<sup>2</sup> surface area and all varied positions in anti-Z<sub>Taq</sub> are directly involved in binding. The main differences between the Z:Z<sub>SPA-1</sub> and the Z<sub>Taq:</sub>anti-Z<sub>Taq</sub> complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither Z<sub>Taq</sub> nor anti-Z<sub>Taq</sub> shows the molten globule behaviour seen for Z<sub>SPA-1</sub>, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general.</p>
4

Structure determination and thermodynamic stabilization of an engineered protein-protein complex

Wahlberg, Elisabet January 2006 (has links)
The interaction between two 6 kDa proteins has been investigated. The studied complex of micromolar affinity (Kd) consists of the Z domain derived from staphylococcal protein A and the related protein ZSPA-1, belonging to a group of binding proteins denoted affibody molecules generated via combinatorial engineering of the Z domain. Affibody-target protein complexes are good model systems for structural and thermodynamic studies of protein-protein interactions. With the Z:ZSPA-1 pair as a starting point, we determined the solution structure of the complex and carried out a preliminary characterization of ZSPA-1. We found that the complex contains a rather large (ca. 1600 Å2) interaction interface with tight steric and polar/nonpolar complementarity. The structure of ZSPA-1 in the complex is well-ordered in a conformation that is very similar to that of the Z domain. However, the conformation of the free ZSPA-1 is best characterized by comparisons with protein molten globules. It shows a reduced secondary structure content, aggregation propensity, poor thermal stability, and binds the hydrophobic dye ANS. This molten globule state of ZSPA-1 is the native state in the absence of the Z domain, and the ordered state is only adopted following a stabilization that occurs upon binding. A more extensive characterization of ZSPA-1 suggested that the average topology of the Z domain is retained in the molten globule state but that it is represented by a multitude of conformations. Furthermore, the molten globule state is only marginally stable, and a significant fraction of ZSPA-1 exists in a completely unfolded state at room temperature. A complete thermodynamic characterization of the Z:ZSPA-1 pair suggests that the stabilization of the molten globule state to an ordered three helix structure in the complex is associated with a significant conformational entropy penalty that might influence the binding affinity negatively and result in an intermediate-affinity (µM) binding protein. This can be compared to a dissociation constant of 20-70 nM for the complex Z:Fc of IgG where Z uses the same binding surface as in Z:ZSPA-1. Structure analyses of Z in the free and bound state reveal an induced fit response upon complex formation with ZSPA-1 where a conformational change of several side chains in the binding surface increases the accessible surface area with almost 400 Å2 i.e. almost half of the total interaction surface in the complex. Two cysteine residues were introduced at specific positions in ZSPA-1 for five mutants in order to stabilize the conformation of ZSPA-1 by disulfide bridge formation. The mutants were thermodynamically characterized and the binding affinity of one mutant showed an improvement by more than a factor of ten. The improvement of the introduced cysteine bridge correlates with an increase in binding enthalpy rather than with entropy. Further analysis of the binding entropy suggests that the conformational entropy change in fact is reduced but its favorable contribution is opposed by a less favorable desolvation enthalpy change. These studies illustrate the structural and thermodynamic complexity of protein-protein interactions, but also that this complexity can be dissected and understood. In this study, a comprehensive characterization of the ZSPA-1 affibody has gained insight into the intricate mechanisms involved in complex formation. These theories were supported by the design of a ZSPA-1 mutant with improved binding affinity. / QC 20100924
5

Molecular principles of protein stability and protein-protein interactions

Lendel, Christofer January 2005 (has links)
Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the ZSPA-1 affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: ZTaq, originally selected to bind Taq DNA polymerase, and anti-ZTaq, an anti-idiotypic binder to ZTaq with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free ZSPA-1 affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å2 total surface area and 10 out of 13 varied residues in ZSPA-1 are directly involved in inter-molecular contacts. Further characterization of the molten globule state of ZSPA-1 revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free ZSPA-1 affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of ZSPA-1 upon binding seriously reduces the binding affinity. The ZTaq:anti-ZTaq complex buries in total 1672 Å2 surface area and all varied positions in anti-ZTaq are directly involved in binding. The main differences between the Z:ZSPA-1 and the ZTaq:anti-ZTaq complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither ZTaq nor anti-ZTaq shows the molten globule behaviour seen for ZSPA-1, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general. / QC 20101025

Page generated in 0.1127 seconds