1 |
Optimizing the Number of Time-steps Used in Option Pricing / Optimering av Antal Tidssteg inom OptionsprissättningLewenhaupt, Hugo January 2019 (has links)
Calculating the price of an option commonly uses numerical methods and can becomputationally heavy. In general, longer computations result in a more precisresult. As such, improving existing models or creating new models have been thefocus in the research field. More recently the focus has instead shifted towardcreating neural networks that can predict the price of a given option directly.This thesis instead studied how the number of time-steps parameter can beoptimized, with regard to precision of the resulting price, and then predict theoptimal number of time-steps for other options. The number of time-stepsparameter determines the computation time of one of the most common models inoption pricing, the Cox-Ross-Rubinstein model (CRR). Two different methodsfor determining the optimal number of time-steps were created and tested. Bothmodels use neural networks to learn the relationship between the input variablesand the output. The first method tried to predict the optimal number oftime-steps directly. The other method instead tried to predict the parameters ofan envelope around the oscillations of the option pricing method. It wasdiscovered that the second method improved the performance of the neuralnetworks tasked with predicting the optimal number of time-steps. It was furtherdiscovered that even though the best neural network that was found significantlyoutperformed the benchmark method, there was no significant difference incalculation times, most likely because the range of log moneyness and pricesthat were used. It was also noted that the neural network tended tounderestimate the parameter and that might not be a desirable property of asystem in charge of estimating a price in the financial sector.
|
2 |
Interest rate derivatives: Pricing of Euro-Bund options : An empirical study of the Black Derman & Toy model (1990)Damberg, Petter, Gullnäs, Alexander January 2012 (has links)
The market for interest rate derivatives has in recent decades grown considerably and the need for proper valuation models has increased. Interest rate derivatives are instruments that in some way are contingent on interest rates such as bonds and swaps and most financial transactions are in some way exposed to interest rate risk. Interest rate derivatives are commonly used to hedge this risk. This study focuses on the Black Derman & Toy model and its capability of pricing interest rate derivatives. The purpose was to simulate the model numerically using daily Euro-Bunds and options data to identify if the model can generate accurate prices. A second purpose was to simplify the theory of building a short rate binomial tree, since existing theory explains this step in a complex way. The study concludes that the BDT model have difficulties valuing the extrinsic value of options with longer maturities, especially out-of-the money options.
|
Page generated in 0.0562 seconds