• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane (PDMS) Mixed Matrix Membranes

Zamani, Ali 22 January 2020 (has links)
In this study, pervaporation, a membrane-based process was studied for in-situ separation of butanol. This technique has a great potential due to its high selectivity, low energy requirement and high efficiency. The primary objective was to improve the performance of the Polydimethylsiloxane (PDMS) membrane for the pervaporation separation and the recovery of butanol by adding nanoparticles into its matrix to make mixed matrix membrane (MMM). These nanoparticles included zinc-based Metal Organic Frameworks (MOFs) and zinc oxide. Different particle sizes of zeolitic imidazolate framework (ZIF-8) were synthesized. The separation performance of MMMs incorporating different sizes of ZIF-8 nanoparticles was compared to the performance of mixed matrix membranes incorporating zinc oxide as well as pure PDMS membrane. Different characteristics of ZIF-8 and their impact on the performance of the host membrane were discussed. Result showed that the presence of nanoparticles improves the PDMS membrane performance up to a certain particle loading. Moreover, it was shown that the particle size and interfacial bond between polymer and particles have a major impact on the pervaporation membrane separation process. The best membrane for pervaporation separation of butanol from binary aqueous solutions was obtained for the 8 wt% small-size ZIF-8/PDMS MMM where the total permeation flux and butanol selectivity were increased by 350% and 6%, respectively, compared to neat PDMS membranes. In addition to the MOFs, nanotubes are considered emerging nanostructured materials for use in membrane separation applications due to their high molecular diffusivity and unique geometry. Recent progress has also been made on the modification of nanotube surface functionality, and the fabrication of nanotube mixed matrix membranes as well as the ability to align them in MMMs. Since numerous types of nanotubes are available and the process of producing well-aligned nanotube MMMs is very challenging, a theoretical model using finite difference method (FD) was used to gain a deeper understanding on the effect of nanotubes on the separation performance of mixed matrix membranes. A series of numerical simulations were performed and the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio, were assessed. The results showed that the relative permeability is enhanced by vertically-aligned nanotubes and further increased with an increase of the permeability ratio, filler volume fraction and the length-to-diameter aspect ratio. In addition, comparing the simulation results with existing analytical models for the prediction of the relative permeability acknowledges a need to develop a new correlation that would provide more accurate predictions of the relative permeability of MMMs with embedded nanotube fillers.
2

Green Design of a Cellulosic Bio-butanol Supply Chain Network with Life Cycle Assessment

Liang, Li 03 October 2017 (has links)
The incentives and policies spearheaded by the U.S. government have created abundant opportunities for renewable fuel production and commercialization. Bio-butanol is a very promising renewable fuel for the future transportation market. Many efforts have been made to improve its production process, but seldom has bio-butanol research discussed the integration and optimization of a cellulosic bio-butanol supply chain network. This study focused on the development of a physical supply chain network and the optimization of a green supply chain network for cellulosic bio-butanol. To develop the physical supply chain network, the production process, material flow, physical supply chain participants, and supply chain logistics activities of cellulosic bio-butanol were identified by conducting an onsite visit and survey of current bio-fuel stakeholders. To optimize the green supply chain network for cellulosic bio-butanol, the life cycle analysis was integrated into a multi-objective linear programming model. With the objectives of maximizing the economic profits and minimizing the greenhouse gas emissions, the proposed model can optimize the location and size of a bio-butanol production plant. The mathematical model was applied to a case study in the state of Missouri, and solved the tradeoff between the feedstock and market availabilities of sorghum stem bio-butanol. The results of this research can be used to support the decision making process at the strategic, tactical, and operational levels of cellulosic bio-butanol commercialization and cellulosic bio-butanol supply chain optimization. The results of this research can also be used as an introductory guideline for beginners who are interested in cellulosic bio-butanol commercialization and supply chain design. / Ph. D. / Renewable energy is one of the most effective tools to fight the threats of climate change, global warming, food price rising, and energy dependence. Cellulosic bio-butanol, a renewable alcohol-based biofuel, is a very promising energy candidate to support the fight for these threats. Due to its low water miscibility, similar energy content and octane number with gasoline, blending ability with gasoline in any proportions, and its directly utilization in gasoline engine, cellulosic bio-butanol is a potential candidate to replace gasoline. Unlike bioethanol, which only relies its fuel distribution on railway and tanker trucks, bio-butanol is compatible with not only railway and tanker trucks but also current pipeline based fuel distribution infrastructures. In order to increase the competitively of this promising energy candidate, the cellulosic bio-butanol is worth to be commercialized. An important step for the commercialization of cellulosic bio-butanol is the network design of its supply chain. In this research, the supply chain network of cellulosic bio-butanol was constructed and optimized. The supply chain network of cellulosic bio-butanol was constructed by identifying the three important aspects of a supply chain network structure: structure dimension, participants in supply chain, and supply chain business process links. A) The structure dimension was identified by understanding the production process of bio-butanol. A case study was used to study the production process of cellulosic bio-butanol. B) The supply chain business process links were identified by conducting a survey on the logistics activities in bio-butanol supply chain. C) The participants of cellulosic bio-butanol supply chain were identified by identifying the physical infrastructure of cellulosic bio-butanol supply chain. The results of the literature review, case study and survey were analyzed to identify the physical infrastructure and the participants in the supply chain. It was found out that the supply chain network structure of cellulosic bio-butanol includes 4 tiers of horizontal structure: suppliers, producers, distributors, and customers. The suppliers refer to the local farmers and feedstock aggregators. The producers are the cellulosic bio-butanol production plants. The distributors are the fuel logistics companies and fuel distributors. The customers are the fuel companies. The cellulosic bio-butanol producers use contracts to connect with biomass suppliers, fuel distributors, and bio-butanol customers. Based on the proposed network structure of cellulosic bio-butanol supply chain, the optimization of the green cellulosic bio-butanol supply chain network was conducted. A multi-objective linear integer programming model was developed to design the green cellulosic bio-butanol supply chain network. Life cycle analysis (LCA) and net present value techniques were used in the proposed model to formulate the environmental and economic objective function. With the objectives of maximizing the economic profits while minimizing the greenhouse gas (GHG) emissions, the proposed model can optimize the location and the size of bio-butanol production plant. The model was applied using data from the state of Missouri (MO). The results showed that the optimal location of cellulosic bio-butanol production plant is in the southeastern region of MO. And the production size of bio-butanol production plant is based on the tradeoff between the economic and environmental objectives. The lower GHG emissions results in a smaller size of production plant.
3

Enhanced Butanol Production by Free and Immobilized Clostridium sp. Cells Using Butyric Acid as Co-Substrate

Gholizadeh, Laili January 2010 (has links)
Butanol production by four different Clostridium sp. strains was investigated using glucoseP2-medium supplemented with increasing concentrations of butyric acid, added as cosubstrate.Batch fermentations were carried out in serum bottles (freely-suspended cellcultures) and fibrous-bed bioreactor (FBB) with medium recirculation (immobilized cells).Butyric acid clearly revealed to inhibit cellular growth with all specific growth rates decliningupon the increase of butyrate concentrations. However, the presence of low and moderatelevels in the medium can readily enhance the ABE-fermentation and increase butanolproduction through a shift induction towards the solventogenic phase controlled by themedium pH. In all cases it was found that 4.0 g⋅l-1 is the optimal concentration of butyratethat maximizes the yields for all ABE-solvents and butanol productivities. The non-mutant C.acetobutylicum ATCC 824 was singled out as the most efficient butanol productive strainamong all bacteria tested (10.3 g⋅l-1 butanol versus 0.72 g⋅l-1 with and without 4.0 g⋅l-1butyrate, respectively) showing a productivity augment in the order of 0.078 g⋅l-1⋅h-1 (78.5%)and yields of 0.3 g⋅g-1 from substrate and 7.6 g⋅g-1 from biomass versus 0.072 g⋅g-1 and 0.41g⋅g-1 with and without the optimal butyrate concentration, respectively. This strain alsorevealed the best overall tolerance over increasing butyrate concentrations up to ∼6.0 g⋅l-1 andthe highest glucose uptake (65.5%) among all bacteria. Furthermore, the beneficial effects ofbutyric acid were also observed through the use of a fibrous bed-bioreactor when the mutatedstrains of C. beijerinckii ATCC 55025 and BA 101 were tested. The use of this immobilizedcell system effectively improved butanol production over the free system with butanol titersin the fermentation broth around 11.5 g⋅l-1 and 9.4 g⋅l-1 for the two bacteria, respectively,roughly doubling the values attained with the corresponding suspended cell cultures when themedia were supplemented with 4.0 g⋅l-1 of butyrate. All these results confirm theenhancement of butanol formation using either free or immobilized cell culturessupplemented with butyric acid concentrations up to 4.0 g⋅l-1 in the media.

Page generated in 0.0416 seconds