Spelling suggestions: "subject:"bioabsorption."" "subject:"coadsorption.""
1 |
Heavy metal removal using polymer immobilised biomassAlhakawati, Mohamed Salem January 2003 (has links)
No description available.
|
2 |
Bioadsorption of Copper (II) By Chlorella Sp. Biomass: Continuous Process with Cost Analysis and Comsol Model SimulationsJones, Lisa A. January 2013 (has links)
With the continuous improvement in knowledge and health risks associated with heavy metal expulsion, government environmental agencies are continuously reducing the legal disposal limits. However, the demand for items like IPods or energy-efficient appliances containing heavy metal like copper is on the rise. Whether from commercial or residential areas, heavy metals are known to have toxic effects on humans, animals, and/or ecosystems; hence, their removal is necessary part of preserving our environment. With the rising cost of natural resources, biological species have proven to be viable alternatives in the jet fuel and biodiesel industries. Algal biomass is widely considered economical because of its renewable, biodegradable, noncompetitive, and nontoxic properties. Currently, algae are being grown on waste water for the lipid; this research involves taking the left over or lipid-extracted algae (LEA) for utilization as a biosorbant to remove heavy metals from wastewater. Down selection via batch processes showed that Chlorella sorokianna and its associated lipid-extracted algae (LEA) demonstrated similar adsorption capacities of copper (II) as three current-in-use ion exchange resins. A feasibility study proved that the LEA was an economically realistic means to remove copper (II) from effluent. The LEA biomass is capable of a maximum adsorption of 14.36 ± 0.27 mg of copper (II) per gram of dry biomass for six regeneration, sorption-desorption, cycles with nitric acid. Using SEM and FTIR, the LEA is capable of ion exchange electrostatic interaction with various surface sites of carboxyl, hydroxyl, and metal groups. Next, the batch process was used to fabricate a lab-scale continuous column process much like ion exchange or activated carbon columns in a waste water treatment plant. Using the continuous systems' kinetics and cycle life, a cost analysis was performed on a plant scale column to reduce copper (II) in wastewater for recovery at a later date, which would yield cost saving over the life of columns. To install three LEA columns prior to ion exchange in a waste water treatment plant, the total capital expense is $1.03 million for a one year time line. The bidirectional flow columns are meant as pretreatment prior to ion exchange columns. The LEA columns provide a waste water treatment plant a sustainable, greener and cheaper alternative to offset costs associated with purifying waste water.
|
3 |
Substances dangereuses dans les effluents de traitement de surface : identification et traitement par des procédés innovants / Hazardous substances in surface treatement effluents : identification and treatement using innovative processesEuvrard, Élise 18 November 2016 (has links)
Le secteur industriel du traitement de surface (TS), secteur d’excellence en Bourgogne Franche-Comté, est contraint de recourir à de nouvelles méthodes d’épuration des eaux du fait d’une règlementation européenne de plus en plus stricte. En effet, notamment dans le cadre de la Directive Cadre sur l’Eau, les industriels doivent sans cesse améliorer la qualité de leurs rejets et diminuer les impacts générés par ceux-ci. Ce travail de thèse s’inscrit dans cet objectif. Ainsi, trois grands types d’investigations ont été menés : le premier a permis de définir la composition qualitative et quantitative en substances dangereuses (SD) des rejets de TS et d’étudier leur variabilité temporelle ; le second a validé des modifications d’une station physico-chimique de traitement des eaux franc-comtoise pour diminuer le flux de SD ; le dernier a proposé des solutions innovantes par bioadsorption sur des matériaux de cyclodextrine et par procédé d’oxydation avancée (POA) soit par ozone/UV, soit par l’utilisation de catalyseurs Pd-Cu pour atteindre le même objectif.[...] / The industrial sector of surface treatment (ST), sector of excellence in Bourgogne Franche-Comté, is forced to resort to new methods for water treatment due to European regulations increasingly strict. Indeed, particularly in the context of the Water Framework Directive, industries must continually improve the quality of their discharge waters and reduce the impacts generated by them. This work is part of this. Thus, three types of investigations were conducted: the first has defined qualitative and quantitative composition of hazardous substances (HS) in ST discharge waters and study their temporal variability; the second has approved changes in a physicochemical wastewater decontamination station to decrease HS water flow; the last proposed innovative solutions by biosorption on cyclodextrin materials and advanced oxidation process (AOP) by ozone / UV, or by the use of Pd-Cu catalysts to achieve the same objective.[...]
|
Page generated in 0.0506 seconds