Spelling suggestions: "subject:"photoanode""
11 |
Stimulation et maitrise électrochimique de la bioremédiation des eaux / Electrochemical stimulation and control of water bioremediatinJobin, Lucas 25 May 2018 (has links)
Notre étude porte sur la preuve de concept de contrôle électrochimique de la méthanogénèse, métabolisme clé de la digestion anaérobie et de la bioremédiation des eaux, en exploitant le principe des piles à combustible microbiennes. Une première partie bibliographique vise à décrire les mécanismes de la méthanogénèse dans le contexte de l'auto-épuration des eaux et de production naturelle de gaz à effet de serre (GES). Les technologies de pile à combustibles microbiennes y sont traitées. Une analyse critique des études sur le contrôle électrochimique de la méthanogénèse permet de dimensionner un montage expérimental dédié à la quantification des GES en cultures biologiques électro-stimulées. Sa conception, sa validation ainsi que les méthodes de mise en culture sont décrites dans une seconde partie. Une série de cultures préliminaires sur des boues digérées anaérobies de station d'épuration permettent d'identifier et fixer les paramètres expérimentaux. Dans une troisième partie, une étude expérimentale fait la preuve de concept de contrôle électrochimique de la méthanogénèse avec une diminution significative de 33% en CH4 (tension de +300 mV vs Ag/AgCl) par rapport à la méthanogénèse naturelle non stimulée. Toutefois, la stimulation contribue à multiplier par 10 la production de CO2. Ce constat amène la problématique supplémentaire d'impact sur l'effet de serre des cultures étudiées. Nous allons donc plus loin que l'objectif initial en nous intéressant à l'empreinte carbone générée par l'ensemble des GES. Le traitement électrochimique, outre la diminution du CH4 produit, permet de diminuer la contribution à l'effet de serre de 15% des cultures électro-stimulées / Our study focuses on the proof of concept of electrochemical control of methanogenesis, key metabolism of anaerobic digestion and water bioremediation, using the principle of microbial fuel cells. A first bibliographic section aims to describe the mechanisms of methanogenesis in the context of self-purification of water and natural production of greenhouse gases (GHG). Microbial fuel cell technologies are addressed. A critical analysis of the studies dealing with electrochemical control of methanogenesis makes it possible to size an experimental setup dedicated to quantification of GHGs in electro-stimulated biological cultures. Its design, validation and methods of cultivation are described in a second part. A series of preliminary cultures on anaerobic digested sewage sludge make it possible to identify and set the experimental parameters. In a third part, an experimental study proves the concept of electrochemical control of methanogenesis with a significant decrease of 33% in CH4 (voltage of +300 mV vs Ag/AgCl) compared to natural unstimulated methanogenesis. However, stimulation contributes to a 10-fold increase in CO2 production. This observation leads to the additional problem of impact on the greenhouse effect of the cultures studied. We go further than the initial objective by looking at the carbon footprint generated by all GHGs. The electrochemical treatment, in addition to the reduction of CH4 produced, makes it possible to reduce the contribution to the greenhouse effect of 15% of electro-stimulated cultures
|
12 |
Performance analysis of bioanode materials and the study of the metabolic activity of Rhodopseudomonas palustris in photo-bioelectrochemical systemsPankan, Aazraa Oumayyah January 2019 (has links)
A sustainable and low-cost system, namely a photo-bioelectrochemical system (photo-BES), based on the natural blueprint of photosynthetic microorganisms was studied. The aim of this research work is to improve the efficiency of electron transfer of the microorganisms for bioelectricity generation. The first strategy adopted was the evaluation of the exoelectrogenic activity of oxygenic photosynthetic cyanobaterium, Synechococcus elongatus PCC 7942, in biophotovoltaic (BPV) platforms through a comparative performance analysis of bioanode materials. The second approach involved improving the performance of anoxygenic photosynthetic bacterium, Rhodopseudomonas palustris ATCC® 17001™, by varying the ratio of nitrogen to carbon sources (N:C) to maximise both biohydrogen production and exoelectrogenesis for conversion into bioelectricity in photosynthetic microbial fuel cells (photoMFCs). A linear correlation was obtained between average surface roughness/surface area and maximum power density of ITO-coated and graphene/ITO-coated substrates. Graphene/ITO-coated PET bioanodes produced the highest maximum power output of 29±4 μW m-2 in a single chamber BPV device due to improved biofilm formation and improved electrochemical activity. XG Leaf®, also known as graphene paper, helped to bridge the shortcomings of carbon fibres in terms of wettability. The most hydrophilic, 240 μm thick graphene paper, produced the highest maximum power output of 393±20 μW m-2 in a membrane electrode assembly (MEA)-type BPV device, mainly due to reduced electrochemical polarisation. A proof of concept study compared the performance of screen-printed graphene onto a membrane separator against 3D-printed bioanodes coated with carbon nanotubes. One mm thick 3D-printed bioanode was better performing as its structures promoted a much denser biofilm with extensive fibrous extracellular matrix. Using a ratio of N:C=0.20 resulted in higher biohydrogen production and higher exoelectrogenic activity, generating a maximum power output of 361±157 mW m-2 and 2.39±0.13 mW m-2, respectively. This study provided additional insight in improving the electron transfer efficiency, which could be used to further optimise photo-BESs as part of future research and development for sustainable technologies.
|
13 |
Piles à combustible microbiennes pour la production d'électricité couplée au traitement des eaux de l'industrie papetièreKetep, Francoise 09 November 2012 (has links) (PDF)
L'objectif de la thèse est d'évaluer la faisabilité de la technologie de pile à combustible microbienne pour la production d'électricité couplée au traitement d'effluents de l'industrie papetière. La première partie du travail montre que de nombreux effluents papetiers permettent de former des biofilms anodiques efficaces. Lorsque les effluents sont complémentés en acétate et l'anode polarisée à -0,3V/ECS des densités de courant de 12 A/m² et des rendements faradiques de 90% ont été obtenus. Lorsque les effluents sont utilisés comme seuls substrats, les densités de courant atteignent 6 A/m² et les rendements faradiques 30%, avec des abattements de DCO jusqu'à 50%. Les biofilms anodiques optimaux ont été associées à des cathodes à air abiotiques pour concevoir des piles complètes. Des puissances surfaciques de 294 mW/m² à 596 mW/m² ont été obtenues avec deux effluents différents.
|
Page generated in 0.0366 seconds