• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 11
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biodétérioration d'une matrice cimentaire par des champignons : Mise au point d'un test accéléré de laboratoire

Wiktor, Virginie 24 April 2008 (has links) (PDF)
Les micro-organismes (bactéries, cyanobactéries, champignons, algues) peuvent se développer sur les matériaux de construction. Ils sont capables de dégrader les propriétés du matériau : de l'altération de l'aspect esthétique jusqu'à une réduction de sa durabilité. La biodétérioration est associée aux mécanismes chimiques, physiques et esthétiques. Une meilleure compréhension des mécanismes impliqués dans la biodétérioration permettra de mieux lutter contre les dommages engendrés et à terme de prévenir le développement de ces micro-organismes.<br /><br />Le but de cette étude est de développer un test accéléré de laboratoire pour étudier la biodétérioration d'une matrice cimentaire par des champignons. L'étude de la biodétérioration nécessite une approche pluridisciplinaire. Dans un premier temps, ce travail a été abordé d'un point de vue purement « micro-organismes ». Cela a permis d'identifier et de définir les paramètres optimums de culture et croissance fongique. Dans un second temps, l'attention s'est portée sur la préparation d'une matrice cimentaire compatible avec le développement fongique. Enfin, les deux approches ont été combinées permettant l'étude de la croissance des micro-organismes sur le matériau.<br /><br />Le test développé a permis d'obtenir un développement fongique rapide sur des éprouvettes en ciment. Les résultats obtenus ont notamment mis en évidence le rôle fondamental joué par le pH de surface sur le développement microbien. Les résultats montrent qu'il ne peut y avoir de développement microbien sans un vieillissement préalable du matériau. D'un point de vue de la biodétérioration, le test développé a permis d'observer et de mettre en évidence la biodétérioration esthétique et physique principalement. Les résultats ont également montré la nécessité de ne pas se limiter aux observations au microscope pour étudier la biodétérioration. Bien que ces observations mettent en évidence la biodétérioration esthétique, elles sous-estiment l'étendue réelle de la colonisation microbienne. La coloration PAS révèle l'étendue de la colonisation microbienne sur et dans la matrice. De plus, les observations au MEB ont permis d'identifier des formes caractéristiques de bactéries, confirmant les observations au stéréomicroscope et après coloration.
2

Impact BIochimique des effluents agricoles et agroindustriels sur les structures/ouvrages en BEtOn dans la filière de valorisation par Méthanisation (ou codigestion anaérobie) / Biochemical impact of agricultural and agro-industrial effluents on concrete structures in anaerobic digestion field

Voegel, Célestine 02 June 2017 (has links)
La digestion anaérobie est une succession d’étapes de dégradation de la matière organique, par l’intermédiaire de microorganismes, opérée industriellement dans des digesteurs en béton. Des métabolites microbiens (acides gras volatils (AGV), NH4+, CO2) produits au cours du processus de digestion attaquent la matrice cimentaire du béton. Afin d’assurer un développement pérenne de la filière de méthanisation, il est donc nécessaire de comprendre d’abord tous ces phénomènes d’altération pour ensuite proposer des solutions durables pour les matériaux de construction des digesteurs. Les objectifs de la thèse visaient à identifier et quantifier les agents agressifs pour le béton présents dans les milieux de la méthanisation, puis à comprendre leurs rôles dans les mécanismes d’altération des matrices cimentaires. Enfin, l’action de ces milieux a pu être comparée sur un panel de matériaux cimentaires réalisées à partir de différents liants : ciment Portland ordinaire, ciment de haut-fourneau, ciment d’aluminate de calcium et liant alcali activé. Dans des digesteurs de laboratoire, les concentrations maximales des agents chimiques agressifs mesurées pendant la digestion anaérobie d’un biodéchet modèle étaient de 3000 mg.L-1 d’AGV, de 800 mg.L-1 de NH4+, et de 140 mg.L-1 de CO2 dissous. La prolifération de microorganismes capables de métaboliser ces composés chimiques agressifs a été observée à la surface des matériaux cimentaires exposés dans le biodéchet au cours de sa digestion. La zone dégradée des matériaux cimentaires exposés est partiellement décalcifiée, vraisemblablement du fait de l’action des AGV et de l’ammonium NH4+, et carbonatée en raison de la présence de CO2 dissous. Des essais in situ, c’est à dire en conditions réelles, réalisées sur une plateforme expérimentale de méthanisation, ont permis de confirmer les phénomènes d’altération observés en laboratoire. En termes de durabilité, le ciment alumineux présente la meilleure résistance face aux attaques biochimiques lorsqu’on le compare au ciment ordinaire ou aux ciments composés de laitier de haut-fourneau au sein de systèmes de méthanisation en laboratoire ou in situ. / Anaerobic digestion consists in the degradation of organic matter by the successive actions of microorganisms, industrially operated in digesters made of concrete. Microbial metabolites (volatile fatty acids (VFA), NH4+, CO2) produced during this process attack the cementitious matrix of the concrete. To ensure the development of this new industrial field, it appears essential to understand first the alteration phenomena, then to propose durable solutions for digesters’ construction materials. The thesis’ objectives were first to identify and to quantify the aggressive agents for concrete in anaerobic digestion media, then to understand their impacts on the cementitious materials’ alteration mechanisms. Finally, the impacts of those media were compared on different cement pastes made of : ordinary Portland cement, blast furnace slag cement, calcium aluminate cement or alkali activated materials. During laboratory tests, the maximal concentration in aggressive agents measured during the digestion of a synthetic biowaste were 3 000 mg.L-1 of VFA, 800 mg.L-1 of NH4+, and 140 mg.L-1 of dissolved CO2. The colonization of the microorganisms able to produce the aggressive agents has been observed on the cementitious materials’ surfaces exposed to the biowaste during digestion. The external degraded layers of the exposed cementitious materials are partially decalcified, most likely regarding to the action of the VFA and the NH4+. Carbonation has also been detected caused by the dissolved CO2. In situ experiments, in real conditions, achieved in an experimental anaerobic digestion platform, confirmed the alteration phenomena distinguished in the laboratory tests. In terms of durability, calcium aluminate cement present the best performances against the biochemical attacks compared to ordinary cement or blast furnace slag cement in laboratory or in situ anaerobic digestion systems.
3

Biodétérioration des matériaux cimentaires dans les ouvrages d'assainissement : étude comparative du ciment d'aluminate de calcium et du ciment Portland

Herisson, Jean, Herisson, Jean 16 October 2012 (has links) (PDF)
La nécessité de rénover les réseaux d'assainissement des grandes villes et les besoins de construire de nouvelles structures conduisent les gestionnaires de réseaux d'assainissement et les fabricants de canalisation à rechercher des solutions pour obtenir des installations d'assainissement durables. Parmi les détériorations rencontrées dans ces structures, 9% peuvent être attribués à la biodétérioration des matériaux cimentaires. Cette étude a deux objectifs principaux. Le premier est de développer un essai accéléré reproductible en laboratoire et qui donne des résultats proches de ceux obtenus sur site. Le second est d'étudier la biodétérioration des matériaux cimentaires pour mieux comprendre les mécanismes et plus spécifiquement la différence de comportement entre les matériaux à base de ciment d'aluminate de calcium (CAC) et de ciment Portland ordinaire (OPC). Dans ce cadre, différentes formulations cimentaires ont été exposées in situ afin de déterminer les paramètres influant sur la biodétérioration. En parallèle, des expériences en laboratoire ont été réalisées pour mieux comprendre chaque étape du mécanisme de biodétérioration. Les résultats des expositions sur site montrent que les matériaux à base de CAC ont une durabilité plus importante que les autres formulations cimentaires. Les études réalisées en laboratoire permettent d'attribuer ces meilleures performances à la teneur en aluminium qui inhibe la croissance des microorganismes tout en protégeant la matrice grâce à la précipitation d'une couche d'alumine hydratée dans la porosité et à la surface de ces matériaux et qui maintient le pH à 3,5-4. La chimie de surface a également un rôle important en favorisant ou non l'oxydation abiotique de l'H2S. Les résultats des expositions sur site et des différents essais de laboratoire ont été utilisés pour développer un essai accéléré donnant des résultats prometteurs
4

Influence de la composition chimique de mortiers sur leur biodétérioration par les algues / Influence of mortar compositions on their algal biofouling

Dalod, Estelle 04 February 2015 (has links)
L’encrassement des façades d’immeuble est causé par un phénomène d’altération biologique essentiellement esthétique. Leur vieillissement naturel favorise la colonisation de micro-organismes. La cinétique de biodétérioration dépend de plusieurs paramètres, tels que la situation géographique, les conditions environnementales et les caractéristiques physico-chimiques du matériau. L’objectif de la présente étude est d’établir un lien entre la composition chimique de mortiers à base de ciments et leur cinétique de colonisation par des microorganismes. Deux bancs d’essais sont utilisés : un banc d’essai in situ et un banc d’essai de biodétérioration accélérée de laboratoire. Deux ciments Portland (OPC) et deux ciments alumineux (CAC) de minéralogies différentes ont été sélectionnés. L’effet de la porosité, de la rugosité et de la carbonatation a également été étudié. Le microorganisme sélectionné pour les essais de laboratoire est l’algue Klebsormidium flaccidum qui se développe de manière prépondérante sur les façades en France. Les résultats obtenus en laboratoire et in situ montrent que la biocolonisation des mortiers à base de CAC est plus lente que celle des mortiers à base d’OPC. Lorsque la porosité augmente, la vitesse de biocolonisation augmente et l’effet de la composition chimique est en grande partie masqué. La biocolonisation des mortiers carbonatés se réalise plus rapidement que celle des mortiers non carbonatés surtout dans le cas des mortiers à base d’OPC. Enfin, les mortiers de surface rugueuse sont colonisés plus rapidement quelle que soit la formulation testée. Cet effet est plus marqué pour les mortiers exposés in situ que pour ceux testés en laboratoire. / The fouling of building-facade is caused by a main aesthetic phenomenon of biological weathering. The natural weathering favors the micro-organisms development. The biofouling kinetics depends on several parameters such as geographical situation, environmental conditions and physicochemical parameters of substrates. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on the algal growth. The biofouling kinetics was followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algal culture on mortar specimens. In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements (OPC) and two calcium aluminate cements (CAC) were tested. The influence of roughness, porosity and carbonation was also studied. The green algae Klebsormidium flaccidum were chosen for the accelerated laboratory tests because of its representativeness. The results obtain in laboratory and in situ show that CAC based mortars slow down the colonization kinetics compared to OPC based mortars. When porosity increases the biofouling kinetics increases and the effect of the mortars chemical composition is largely hidden. The carbonated mortars biofouling is achieved more quickly than uncarbonated ones especially for OPC based mortars. Finally, the rough surfaces are colonized faster whatever formulation tested. This parameter is mostly highlighted for in situ tests.
5

Biodétérioration des matériaux cimentaires dans les ouvrages d'assainissement : étude comparative du ciment d'aluminate de calcium et du ciment Portland / Biodeterioration of cementitious materials in sewers networks : comparative study of calcium aluminate cement and ordinary portland cement

Herisson, Jean 16 October 2012 (has links)
La nécessité de rénover les réseaux d'assainissement des grandes villes et les besoins de construire de nouvelles structures conduisent les gestionnaires de réseaux d'assainissement et les fabricants de canalisation à rechercher des solutions pour obtenir des installations d'assainissement durables. Parmi les détériorations rencontrées dans ces structures, 9% peuvent être attribués à la biodétérioration des matériaux cimentaires. Cette étude a deux objectifs principaux. Le premier est de développer un essai accéléré reproductible en laboratoire et qui donne des résultats proches de ceux obtenus sur site. Le second est d'étudier la biodétérioration des matériaux cimentaires pour mieux comprendre les mécanismes et plus spécifiquement la différence de comportement entre les matériaux à base de ciment d'aluminate de calcium (CAC) et de ciment Portland ordinaire (OPC). Dans ce cadre, différentes formulations cimentaires ont été exposées in situ afin de déterminer les paramètres influant sur la biodétérioration. En parallèle, des expériences en laboratoire ont été réalisées pour mieux comprendre chaque étape du mécanisme de biodétérioration. Les résultats des expositions sur site montrent que les matériaux à base de CAC ont une durabilité plus importante que les autres formulations cimentaires. Les études réalisées en laboratoire permettent d'attribuer ces meilleures performances à la teneur en aluminium qui inhibe la croissance des microorganismes tout en protégeant la matrice grâce à la précipitation d'une couche d'alumine hydratée dans la porosité et à la surface de ces matériaux et qui maintient le pH à 3,5-4. La chimie de surface a également un rôle important en favorisant ou non l'oxydation abiotique de l'H2S. Les résultats des expositions sur site et des différents essais de laboratoire ont été utilisés pour développer un essai accéléré donnant des résultats prometteurs / The need for renovation of sewer networks in major cities and the necessity to build new structures lead managers of sewer pipe and manufacturers to seek for solutions for sustainable sanitation. 9% of damages encountered in these structures can be attributed to the biodeterioration of cementitious materials. This study has two main objectives. The first one is to develop an accelerated reproducible laboratory test that gives results similar to those obtained on site. The second is to study the biodeterioration of cementitious materials in order to better understand mechanisms and more especially the difference in behavior between materials based on calcium aluminate cement (CAC) and ordinary Portland cement (OPC). Within this framework, different cement formulations were exposed in situ to identify the parameters influencing biodeterioration. Meanwhile, laboratory experiments were conducted to better understand each step of the mechanism of biodeterioration. Results of on site exposition show that materials based on CAC have a greater durability than other cement formulations. Laboratory studies assign these best performances to the aluminum content which inhibits the growth of microorganisms while protecting the matrix by precipitation of a hydrated alumina layer in the porosity and on the surface of these materials. This layer maintains the pH at 3.5-4. Surface chemistry was shown to play an important role in catalizing abiotic oxidation of H2S. The results of on-site exhibitions and various laboratory tests were used to develop an accelerated test giving promising results
6

Degradation modeling of concrete submitted to biogenic acid attack / Modélisation de la dégradation du béton due aux attaques acidesbiogéniques.

Yuan, Haifeng 03 December 2013 (has links)
La biodétérioration du béton, très courante dans les systèmes d'égouts et de traitement des eaux usées, entraîne une dégradation significative de la structure. Normalement, le processus peut être décrit par les deux étapes suivantes : 1) Des réactions biochimiques produisent des espèces agressives dans les biofilms qui tapissent la surface du béton. L'un des plus importants acides biogéniques que l'on trouve dans les canalisations d'égout est l'acide sulfurique (H2 SO4 ) que est produit par des bactéries sulfo-oxydante (BSO)à partir de l'hydrogène sulfuré (H2 S). 2) Les réactions chimiques entre les espèces agressives biogéniques et les produits d'hydratation du ciment sont responsables de la détérioration du béton. Un modèle de transport réactif est proposé afin de simuler les processus des détériorations chimique et biochimique des matériaux cimentaires en contact avec les BSO et le H2 S ou une solution d'acide sulfurique. L'objectif de ce modèle est de résoudre simultanément le transport et la biochimie / chimie dans les biofilms et les matériaux cimentaires par une approche globale couplée. Afin de fournir un environnement approprié pour la croissance des BSO, la neutralisation de la surface du béton (i.e., l'absorption de H2 S et la corrosion aqueuse de H2 SO4 ) est considérée. Pour obtenir la quantité de H2 SO4 biogénique, la bio-oxydation du H2 S par l'activation des bactéries est simulée par un modèle simplifié. Puis, pour alimenter un environnement convenable pour la croissance des BSO, la réduction abiotique du pH du béton est introduite. Le taux de production de H2 SO4 est régi par la valeur du pH dans les biofilms et la quantité de H2 S dans le gaz. On fait l'hypothèse que tous les processus chimiques sont en équilibre thermodynamique. La dissolution de la portlandite (CH) et du silicate de calcium hydratés (C-S-H), ainsi que la précipitation de gypse (CSH2) et du sulfure de calcium sont décrites par la loi d'action de masse et le seuil des produits d'activité ionique. Pour prendre en compte la décroissante continue du rapport Ca/Si lors de la dissolution de la C-S-H, une généralisation de la loi d'action de masse est appliquée. En simplifiant le processus de précipitation du gypse, un modèle d'endommagement est introduit pour caractériser la détérioration du béton due au gonflement du gypse. Ainsi, l'évolution de la porosité et de la profondeur de la détérioration pendant le processus de dégradation sont pris en compte. Seule la diffusion des espèces aqueuses est considérée. Différents coefficients de diffusion sont utilisés pour divers ions et l'équation de Nernst-Planck est implémentée. L'effet, pendant la détérioration, de la modification de la microstructure sur les propriétés de transport est aussi considéré. Pour les biofilms et les matériaux cimentaires, les équations d'équilibre de masse totale de chaque atome (Ca, Si, S, K, Cl) sont utilisées pour coupler les équations de transport et les réactions (bio) chimiques. Le modèle est implémenté dans un code volumes finis, Bil. Grâce à l'introduction de la méthode des volumes finis, on illustre le couplage du processus bio-chimie dans les biofilms et le processus de la chimiedes matériaux cimentaires. Par ce modèle, certaines expériences rapportées dans la littérature, dont des tests d'immersion chimiques (condition de la solution statique et condition de la solution d'écoulement) et des simulations microbiologiques, sont simulées. Les résultats numériques et les observations expérimentales sont comparés et discutés. L'influence des propriétés des matériaux cimentaires (porosité initiale, couche carbonatée, etc.) et les facteurs d'environnement (concentration de H2 SO4 quantité de H2 S etc) sont aussi étudiés par ce modèle. En outre, une prédiction à long terme est menée / Bio-deterioration of concrete, which is very common in sewer system and waste water treatment plant, results in significant structure degradation. Normally, the process can be described by the two following parts: 1) Biochemistry reactions producing biogenic aggressive species in biofilms which are spread on the surface of concrete. As one of the most significant biogenic acid in sewer pipes, sulfuric acid (H2SO4) is produced by sulfur oxidizing bacteria (SOB). 2) Chemical reactions between biogenic aggressive species and cement hydration products which is responsible for concrete deterioration. A reactive transport model is proposed to simulate the bio-chemical and chemical deterioration processes of cementitious materials in contact with SOB and H2S or sulfuric acid solution. This model aims at solving simultaneously transport and biochemistry/chemistry in biofilms and cementitious materials by a global coupled approach. To provide an appropriate environment for SOB to grow, the surface neutralization of concrete (i.e., the absorption of H2S and aqueous H2S corrosion) is considered. To obtain the amount of biogenic H2SO4, the bio-oxidation of H2S by the activation of bacteria is simulated via a simplified model. To provide a suitable environment for SOB to grow, the abiotic pH reduction of concrete process is introduced. The production rate of H2SO4 is governed by the pH in the biofilms and the content of H2S in gas.It is assumed that all chemical processes are in thermodynamical equilibrium. The dissolution of portlandite (CH) and calcium silicate hydrates (C-S-H) and the precipitation of gypsum (C¯S H2) and calcium sulfide are described by mass action law and threshold of ion activity products. To take into account the continuous decrease of the Ca/Si ratio during the dissolution of C-S-H a generalization of the mass action law is applied. By simplifying the precipitation process of gypsum, a damage model is introduced to characterize the deterioration of concrete due to the swelling of gypsum. Thus, the porosity evolution and deterioration depth during deterioration process are taken into account. Only diffusion of aqueous species are considered. Different diffusion coefficients are employed for various ions and Nernst-Planck equation was implemented. The effect of the microstructure change during deterioration on transport properties is considered as well. For both biofilms and cementitious materials, the balance equations of total mass of each atom (Ca, Si, S, K, Cl) are used to couple transport equations and (bio-)chemical reactions. The model is implemented within a finite-volume code, Bil. Following the introduction of principle of the finite volume method, the coupling of the bio-chemistry process in biofilms and chemistry process in cementitious materials is illustrated. By this model, some experiments reported in literature, including chemical immersion tests (statical solution condition and flow solution condition) and microbiological simulation tests, are simulated. The numerical results and the experimental observations are compared and discussed. The influence of properties of cementitious materials (initial porosity, carbonated layer, etc.) and environmental factors (concentration of H2SO4, content of H2S, etc.) are investigated by this model as well. Furthermore, a long term predictionis conducted
7

Caractérisation du rôle de l'aluminium dans les interactions entre les microorganismes et les matériaux cimentaires dans le cadre des réseaux d'assainissement / Characterization of the role of aluminium in the interactions between microorganisms and cementitious material in sewer networks context

Buvignier, Amaury 28 June 2018 (has links)
Une part importante de la détérioration des réseaux d’assainissement en matériau cimentaire est d’origine biologique. Dans ce contexte, les matériaux à base de ciment alumineux ont montré une meilleure durabilité que ceux à base de ciment Portland ordinaire, couramment utilisés. Les hypothèses de la littérature qui expliqueraient cette meilleure résistance sont centré sur l’aluminium (présent à plus de 50% dans les ciments alumineux pour seulement 5% dans les ciments Portland). L’objectif de cette thèse est de caractériser et hiérarchiser les mécanismes de résistance des matériaux cimentaires lors de la biodétérioration. Cela permettra de comprendre le rôle de l’aluminium dans les interactions entre les microorganismes et les matériaux cimentaires. Après des études en réacteur et des tests de biodétérioration de pâte de ciments en laboratoire, il semblerait que la principale cause de résistance est due à la réactivité des matrices cimentaires plus qu’à un effet inhibiteur de l’aluminium ou du matériau sur les microorganismes. / An important part of the deterioration observed in concrete sewer networks is due to biological activity. In this context, calcium aluminate cement (CAC) based material has shown a better durability than ordinary Portland cement, usually used in such context. In literature, hypothesis explaining the better resistance are focused on aluminium. The aim of the project is to characterize the role of aluminium in the interactions between cementitious material and microorganisms. Reactor study and Lab scale aggressive biodeterioration protocol of cementitious material revealed that the better resistance of CAC is due to their lower reactivity and not to a bacteriostatic effect of the material on the microorganisms.
8

Comportement de matériaux cimentaires en eau douce naturelle : analyse de l’influence des micro-organismes / Durability of cementitious materials in natural freshwater : Analysis of the micro-organisms influence

Georges, Valentin 17 November 2017 (has links)
Ces travaux s’intéressent au comportement de pâtes de ciment de différentes natures cimentaires exposées à une eau douce naturelle et plus particulièrement aux interactions avec les éléments biologiques. Cette étude est basée sur l’analyse comparative d’échantillons placés en milieu naturel (Moselle) et en milieux artificiels de laboratoire. Quels que soient les milieux et les microorganismes considérés, les résultats montrent une modification de la minéralogie de la surface et du réseau poreux des échantillons (taux de porosité, propriétés de transferts). Les essais en laboratoire ont permis d’isoler l’influence spécifique des bactéries dans les phénomènes de biolixiviation. Le dénombrement bactérien montre aussi que la densité de cellules présentes dans le biofilm recouvrant les échantillons dépend peu de la nuance cimentaire, excepté pour les ciments au calcaire. Les observations au MEB ont révélé, sur l’ensemble des échantillons, la présence abondante de diatomées en partie recouvertes par une couche minérale issue d’une cristallisation secondaire. La colonisation de la surface par ces diatomées est influencée par la géométrie et la nature minéralogique des échantillons. Les résultats d’essais en laboratoire ont montré qu’elles ont des interactions avec la pâte de ciment, l’évolution des densités de population de diatomées coïncide en effet avec l’évolution des caractéristiques de porosité (taux de porosité, propriétés de transferts) / This work focuses on the behavior of cement pastes of different cement bases exposed to natural fresh water and on the interactions with the biological elements. This study is based on the comparative analysis of samples immersed in natural environment (Moselle) and in artificial laboratory media. Whatever the media and microorganisms considered, the results show a change in the mineralogy of the surface and the porous network of the samples (porosity rate, transfer properties). Laboratory tests highlighted the specific influence of bacteria in bioleaching phenomena. The bacterial count also shows that the density of cells present in the biofilm covering the samples does not mainly depend on the cementitious grade, except for the limestone cements. The SEM observations revealed the abundant presence of diatoms on all samples. Diatoms are partly covered by a mineral layer resulting from secondary crystallization. The colonization of the surface by these diatoms is influenced by the geometry and mineralogical nature of the samples. The results of laboratory tests have shown that they interact with cement paste; the evolution of diatom population densities coincides with changes in porosity characteristics (porosity rate, transfer properties)
9

Compréhension des mécanismes de biodétérioration des matériaux cimentaires dans les réseaux d'assainissement : étude expérimentale et modélisation / Understanding of cementitious materials biodeterioration in sewer networks : experimental study and modelling

Grandclerc, Anais 16 October 2017 (has links)
Des détériorations importantes sont observées dans les réseaux d’assainissement en béton en raison de la présence d’hydrogène sulfuré (H2S). Différentes études ont montré qu’un environnement riche en hydrogène sulfuré entraîne, au contact de surfaces cimentaires, la sélection de bactéries sulfo-oxydantes (bactéries capables d’oxyder des composés soufrés réduits), menant à la production d’acide sulfurique. Cet acide détériore localement les réseaux par dissolution et recomposition minéralogique de la matrice cimentaire (formation de gypse et d’ettringite). Les réseaux ne collectent alors plus correctement les eaux usées et ce phénomène provoque donc des travaux de rénovation onéreux. Dans ce contexte, des solutions plus performantes que celles mises en place actuellement doivent être étudiées. L’objectif du projet FUI DURANET dans lequel s’inscrit cette thèse vise à proposer un essai accéléré et à développer un modèle.La mise en place d’essais abiotiques a permis de démontrer que cette première étape n’est pas l’étape limitante du phénomène de biodétérioration. En effet, le pH de surface des matériaux cimentaires adapté au développement microbien est rapidement atteint lorsqu’ils sont mis au contact de l’hydrogène sulfuré à une concentration élevée (100 ppm), quel que soit le matériau cimentaire considéré (mortiers à base de ciments CEM I, CEM III, CEM IV, CEM V, CAC et CSS). La modélisation de l’attaque par l’acide sulfurique et la mise en place d’un essai représentatif et accéléré ont ensuite été abordées pour prédire la durabilité des différents matériaux cimentaires de l’étude. Pour l’essai, différentes techniques d’ensemencement des microorganismes à la surface des matériaux cimentaires ont été comparées, afin de déterminer laquelle mène à la meilleure reproduction des conditions d’un réseau d’assainissement et à l’accélération des mécanismes de biodétérioration la plus importante. Ces essais permettent de préconiser l’utilisation de boues activées contenant un consortium de microorganismes, par rapport à l’utilisation de souches de collection, dont l’activité dépend trop fortement de leur adaptabilité aux conditions environnementales. L’ensemble des résultats, obtenus expérimentalement et par modélisation, montre une meilleure résistance des ciments d’aluminate de calcium et une dégradation très importante des ciments Portland face aux mécanismes mis en jeu, en accord avec les essais in-situ / Important deteriorations have been observed in concrete sewers, due to hydrogen sulfide (H2S) presence. H2S is used as nutrients for sulfur-oxidizing bacteria (bacteria able to oxidize the reduced sulfur compounds) and is oxidized into sulfuric acid. This acid attack of concrete leads to cementitious matrix dissolution and expansive products formation (gypsum and ettringite). This phenomenon disturbs the sewer system and conducts to expensive works of rehabilitation. In order to avoid this degradation, a French project named “FUI Duranet” was initiated to propose more efficient solutions. The aim of this thesis is to define a representative and accelerated test as well as a predictive model.Abiotic tests allow stating that this first stage of the biodeterioration mechanisms is not the limiting stage. Indeed, the adapted surface pH of the cementitious materials to bacteria development is quickly reached with a high H2S concentration (100 ppm), whatever the cementitious materials considered (mortars based on CEM I, CEM III, CEM IV, CEM V, CAC, and SSC cements). The chemical-transport modeling of the sulfuric acid attack of cementitious materials and the establishment of a representative and accelerated test have been proposed to predict their service life in these conditions. For the test, different seeding technics have been compared in order to determine which one lead to the better reproduction and acceleration of biodeterioration mechanisms. This test allows recommending the sludge use, which contains a microorganism’s consortium, rather than a collection strain use, whose activity is too dependent on environmental conditions. With the experimental test and the model, the better resistance of the calcium aluminate cement and the important degradation of the Portland cements are quickly confirmed, as highlighted during the field tests
10

Etude de l'encrassement biologique de matériaux cimentaires en eau de rivière : analyse de l'influence des paramètres de surface des pâtes cimentaires / A study of the biofouling ot cementitious materials in river water : analysis of the influence of surface parameters of cement pastes

Ben Ahmed, Karim 12 July 2016 (has links)
Les aspects biologiques ne sont généralement pas considérés lors de la conception des ouvrages de génie civil, malgré que la biocolonisation puisse affecter leur durabilité. Cette thèse s’intéresse à l’encrassement biologique des matériaux cimentaires en eau de rivière. Un essai de biocolonisation phototrophe accélérée, simulant les conditions en rivière a été mis au point et validé. Il a permis l’étude de pâtes cimentaires de différentes formulations. La colonisation a été évaluée par le taux de recouvrement de la surface, estimé par une méthode proposée d’analyse d’images. Une étude de l’influence de la rugosité sur la bioréceptivité du matériau a été réalisée à travers plusieurs paramètres de différentes natures et la densité de pics (paramètre d’espacement) a montré l’influence la plus déterminante. Un modèle a été proposé pour expliquer cette influence et a donné des résultats satisfaisants. Les influences de la porosité et du pH semblent être limitées dans les conditions de l’essai. Enfin, la micro-indentation a été adaptée pour l’évaluation mécanique de la détérioration des pâtes cimentaires sur de faibles épaisseurs. Cette technique pourra être utilisée pour évaluer la biodétérioration. / The biological aspects are generally not considered in the design of civil engineering works, although the biocolonisation may affect their durability. This thesis focuses on biofouling of cementitious materials in river water. A laboratory accelerated test of phototrophic biocolonisation, simulating the river conditions, was developed and validated. It allowed the study of cement pastes of different formulations. Colonization was assessed by the recovery rate of the surface, estimated by a proposed method of image analysis. A study of the roughness influence on the bioreceptivity of the material was conducted through several roughness parameters of different natures, and the peaks density (a spacing parameter) showed the most decisive influence. A model was proposed to explain this influence and gave satisfactory results. The influences of porosity and pH appeared to be limited in the test conditions. Finally, micro-indentation was adapted to the mechanical evaluation of the deterioration of thin layers of cement pastes. This technique may be used to evaluate the biodeterioration.

Page generated in 0.0828 seconds