Spelling suggestions: "subject:"biodiversitybecause functioning"" "subject:"biodiversityoffset functioning""
1 |
Incorporating spatial and temporal variability in analyses of the relationship between biodiversity and ecosystem functioningTanadini, Matteo January 2016 (has links)
In the last few decades, a growing literature has examined how biodiversity influences ecosystem functioning. This body of work has greatly improved our understanding of ecosystem functioning and its modulation by biodiversity. In particular, there is nowadays large consensus that biodiversity increases ecosystem productivity, and stabilises ecosystems. Early investigations were largely theoretical or involved simple experiments run in laboratory conditions, but over time biodiversity ecosystem-functioning experiments evolved to more realistic field experiments that better represent the real conditions found in natural ecosystems. In particular, these experiments are often run on larger spatial scales and over longer time frames allowing for the effect of environmental heterogeneity and temporal fluctuations to be explored. The designs of these experiments evolved along with the questions addressed in this field of research. However, the analytical tools used in the analyses of these experiments followed a slightly different path. In particular, most of the metrics currently used to analyse biodiversity ecosystem functioning experiments are not entirely suited to properly deal with the complexity of modern designs as they make a number of assumptions that are not met any more. In my thesis I developed a unified framework, based on the tailored use of Linear Mixed Effects Models, to analyse biodiversity-ecosystem functioning experiments such that the new complexities of these experiments can be taken into account. This thesis aimed to bring the focus of the analysis back to the biological interpretation of the results. I successfully applied my approach to several data sets. The framework developed here is expected to improve greatly our understanding of ecosystem functioning and how biodiversity modulates it. It also sheds new light on past research in this field. The great flexibility of the new approach makes it possible to let these experiments to evolve such that new biological questions can be addressed.
|
2 |
Effects of Plant Diversity on Root Decomposition and Root Turnover in GrasslandsChen, Hongmei 27 July 2018 (has links)
Root processes – decomposition, production, and mortality – are intrinsic parts of ecosystem carbon cycling and yet have been understudied in the context of biodiversity-ecosystem functioning relationships. In a long-term grassland diversity experiment (the Jena Experiment), I investigated (1) whether and how plant diversity affected root decomposition and (2) how plant diversity enhanced standing root biomass and influenced root turnover.
Plant diversity may affect root decomposition via three non-mutually exclusive pathways: (1) root litter quality, (2) soil biota, and/or (3) soil abiotic conditions. In Chapter 3, via three decomposition experiments, I demonstrate that plant species richness negatively affects root decomposition via the root litter quality pathway and the soil environment pathway (including soil biotic and abiotic conditions). The presence of grasses negatively affects root decomposition while the presence of legumes positively affects root decomposition. In Chapter 4, I further explored the pathways driving the relationship between plant diversity and root decomposition using structural equation modeling. The final structural equation model suggests that root chemistry is a universal pathway for explaining the effects of plant diversity on root decomposition and that Oribatida are also involved in root decomposition. Most importantly, I directly show that different measures of plant diversity influence root decomposition via different pathways.
In Chapter 5, I shift my focus to root production and mortality which collectively determine standing root biomass. I monitored in situ root dynamics biweekly for one growing season using minirhizotrons. I show that plant species richness consistently enhances standing root length throughout the observational period. However, plant species richness did not affect rates of root length production, mortality, or turnover. Only root lifespan increased with increasing plant species richness. The lack of significant diversity effect on root length-based measures may be due to the age of the studied communities. In mature grasslands, plant species richness may only have a minor effect on root turnover and one growing season may be too short to detect such a small effect.
The results of this dissertation collectively provide new insights into the relationship between plant species richness and soil carbon stock in mature grasslands. Based on the new paradigm of soil carbon formation, plant species richness may enhance soil carbon stock through a greater input of partially decomposed root residuals (reduced root decomposition) and a higher input of root exudates (increased standing root biomass).:ACKNOWLEDGEMENTS .......................................................................................III
1 GENERAL INTRODUCTION ............................................................................... 1
1.1 Biodiversity-Ecosystem Functioning Research in the Context of Global Biodiversity Loss ……........................................................................................... 1
1.2 Biodiversity-Ecosystem Functioning Relationships .............................................................................................................................. 2
1.3 Effects of Plant Diversity on Decomposition ................................................... 6
1.4 Effects of Plant Diversity on Root Turnover .................................................. 10
1.5 Scope and Contents of this Dissertation ...................................................... 14
2 GENERAL METHODS ......................................................................................17
2.1 The Jena Experiment ................................................................................... 17
2.2 Root Decomposition Experiments ................................................................ 18
2.3 Applying Structural Equation Modeling to Understand the Diversity-Decomposition Relationships ............................................................................. 22
2.4 In-situ Monitoring of Root Turnover Using Minirhizotrons ............................. 25
3 PLANT SPECIES RICHNESS NEGATIVELY AFFECTS ROOT DECOMPOSITION IN GRASSLANDS ................................................................................................27
4 ROOT CHEMISTRY AND SOIL FAUNA, BUT NOT SOIL ABIOTIC CONDITIONS EXPLAIN THE EFFECTS OF PLANT DIVERSITY ON ROOT DECOMPOSITION..44
5 THE EFFECTS OF PLANT SPECIES RICHNESS ON ROOT TURNOVER IN EXPERIMENTAL GRASSLANDS...........................................................................74
6 GENERAL DISCUSSION..................................................................................105
6.1 Summary of Contents in this Dissertation.................................................... 105
6.2 Advancing Our Understanding of Root Decomposition in BEF Research.... 106
6.3 Time Matters for the Diversity–Root Turnover Relationship......................... 112
6.4 Outlook........................................................................................................ 117
REFERENCES...................................................................................................120
SUMMARY .........................................................................................................137
ZUSAMMENFASSUNG .......................................................................................142
LIST OF PUBLICATIONS....................................................................................148
AUTHOR CONTRIBUTION STATEMENTS..........................................................150
DECLARATION OF INDEPENDENT WORK........................................................159
CURRICULUM VITAE .........................................................................................160
|
3 |
Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning LinkWahdan, Sara Fareed Mohamed, Heintz-Buschart, Anna, Sansupa, Chakriya, Tanunchai, Benjawan, Wu, Yu-Ting, Schädler, Martin, Noll, Matthias, Purahong, Witoon, Buscot, François 27 March 2023 (has links)
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue
in soil and microbial ecology. To date, most belowground BEF studies focus on the
diversity of microbes analyzed by barcoding on total DNA, which targets both active and
inactive microbes. This approach creates a bias as it mixes the part of the microbiome
currently steering processes that provide actual ecosystem functions with the part not
directly involved. Using experimental extensive grasslands under current and future
climate, we used the bromodeoxyuridine (BrdU) immunocapture technique combined
with pair-end Illumina sequencing to characterize both total and active microbiomes
(including both bacteria and fungi) in the rhizosphere of Trifolium pratense. Rhizosphere
function was assessed by measuring the activity of three microbial extracellular enzymes
(β-glucosidase, N-acetyl-glucosaminidase, and acid phosphatase), which play central
roles in the C, N, and P acquisition. We showed that the richness of overall and specific
functional groups of active microbes in rhizosphere soil significantly correlated with the
measured enzyme activities, while total microbial richness did not. Active microbes of
the rhizosphere represented 42.8 and 32.1% of the total bacterial and fungal taxa,
respectively, and were taxonomically and functionally diverse. Nitrogen fixing bacteria
were highly active in this system with 71% of the total operational taxonomic units (OTUs)
assigned to this group detected as active. We found the total and active microbiomes to
display different responses to variations in soil physicochemical factors in the grassland,
but with some degree of resistance to a manipulation mimicking future climate. Our
findings provide critical insights into the role of active microbes in defining soil ecosystem
functions in a grassland ecosystem. We demonstrate that the relationship between
biodiversity-ecosystem functioning in soil may be stronger than previously thought.
|
4 |
Ecological impacts of biodiversity enrichment in oil palm plantationsTeuscher, Miriam 27 November 2015 (has links)
No description available.
|
5 |
From trees to soil: microbial and spatial mediation of tree diversity effects on carbon cycling in subtropical Chinese forestsBeugnon, Rémy 09 February 2022 (has links)
The loss of biodiversity is affecting all ecosystems on Earth, one of the greatest threats to biodiversity being climate change. Forests have been highlighted for the potential to mitigate climate change by storing carbon above- and belowground in soils. In this thesis, I studied the effects of tree diversity on carbon cycling in subtropical Chinese forests. I aimed to explore the mechanisms behind tree diversity effects on carbon cycling by focusing on microbial-based processes and the consequences of tree diversity-induced spatial heterogeneity.
First, my colleagues and I tested the effects of tree diversity on litterfall spatial patterns and the consequences for litter decomposition and quantified the importance of microbial community in decomposition processes. Second, we explored the effects of tree diversity on relationships between soil microbial facets and soil microbial functions. Third, we tested the effects of tree diversity on soil microbial biomass and carbon concentrations, and their mediation by biotic and abiotic conditions. Finally, we explored the consequences of diversifying forests for re-/afforestation initiatives and plantations to reduce atmospheric carbon levels, and the benefits of diversity for mitigating the effects of climate change on ecosystems and human well-being.
We highlighted the positive effects of tree diversity on tree productivity. By increasing the amount and diversity of litterfall, tree diversity increased litter decomposition and subsequently the assimilation of tree products into the forest soils. Our investigation has shown the key role of microbial communities for forests carbon dynamics by carrying out litter decomposition, soil heterotrophic respiration, and soil carbon stabilization. Most notably, tree diversity effects on soil microbial respiration were mainly mediated by soil microbial biomass rather than soil microbial community taxonomic or functional diversity. The effects of tree diversity on microbial biomass were mediated by biotic and abiotic conditions. Taken together, we revealed the importance of considering space to understand biodiversity-ecosystem functioning
relationships. Finally, we argued that tree diversity is a promising avenue to maximize the potential of re-/afforestation projects to mitigate increasing atmospheric carbon. Moreover, we highlighted that diversifying forests in re-/afforestation initiatives can help to reduce climate change effects on ecosystems: first, by increasing resistance and resilience to extreme climatic events, and second, by buffering microclimatic conditions in natural and urban areas.
My investigation highlighted that tree diversity effects on ecosystem functioning could be explained by both mass and diversity effects on higher trophic levels and their functions. In addition, I showed the key role of tree diversity-induced spatial heterogeneity and the need to consider space and time in further research. Moreover, these results need to be combined with practitioner constraints to enable feasible restoration projects.:Summary table
Bibliographic information .................................................................................... I ~ XV
Main body ......................................................................................................... 1 ~ 212
Supplementary materials ..................................................................................... i ~ xv
Scientific supplementary materials ............................................................. -1- ~ - 154-
Table of Contents
Table of figures .......................................................................................................... XI
Table of scientific supplementary materials ............................................................. XIII
Glossary ................................................................................................................... XV
Introduction ................................................................................................................. 3
Chapter I - Tree diversity effects on litter decomposition are mediated by litterfall and microbial processes .................................................................................................. 35
Transition I - II ........................................................................................................... 67
Chapter II - Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning................................................ 71
Transition II - III ....................................................................................................... 107
Chapter III - Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration ................................................... 111
Transition III - IV ..................................................................................................... 155
Chapter IV – Diverse forests are cool: promoting diverse forests to mitigate carbon emissions and climate change ............................................................................... 159
General discussion ................................................................................................. 173
Abstract .................................................................................................................. 195
General acknowledgments ..................................................................................... 209
Supplementary materials ..............................................................................................i
|
6 |
Forest productivity and stability under drought: the role of tree species richness, structural diversity and drought-tolerance trait diversitySchnabel, Florian 17 January 2023 (has links)
The increasing frequency and intensity of droughts threaten forests and their climate change mitigation potential. Mixed-species forests are promoted to increase forest productivity and stability compared to monospecific forests, but we still lack a mechanistic understanding of the strength, nature and drivers of tree diversity effects on productivity and stability under drought. Here, I studied the stress hotter droughts inflict on trees and examined whether diversification in tree species, structures and drought-tolerance traits is a potential solution to this threat. In study 1, I found that the hotter drought years 2018–2019, the severest droughts since records, induced unprecedented tree productivity and physiological stress responses (reduced growth and increased δ13C) in a Central European floodplain forest. Hotter droughts thus constitute a novel threat. In studies 2–4, I examined diversity-productivity and diversity-stability relationships across spatiotemporal scales in a tropical (study 2) and a subtropical (studies 3, 4) tree diversity experiment specifically designed to examine biodiversity-ecosystem functioning relationships. Tree species richness consistently increased productivity and stability, and this effect was strongest at the highest levels of diversity. Structural diversity increased productivity but was unrelated to stability, while diversity in drought-tolerance traits increased stability but not productivity. Assessing drought-tolerance traits was essential for understanding the role of tree diversity during drought. Positive diversity effects on productivity scaled up from the tree neighbourhood to the community level, but effects on stability emerged only at the community level. Community stability increased with species richness due to asynchronous species responses to dry and wet years driven by species’ drought-tolerance traits. I showed that diversity but not identity in drought-tolerance traits increases community stability. Overall, promoting structurally and functionally diverse mixed-species forests may enable high productivity and stability under intensifying climate change.:1. General introduction
1.1. Mixed-species forests
1.2. Diversity-productivity relationships
1.3. Diversity-productivity relationships during drought
1.4. Diversity-stability relationships
1.5. Diversity facets
1.6. Drought-tolerance traits
1.7. Linkages between the four studies
2. Methodological features
2.1. Study sites and approaches
2.2. Productivity, stability and physiological water stress
2.3. The quantification of diversity
2.4. Spatiotemporal analyses
3. Original contributions
Study 1: Cumulative growth and stress responses to the 2018–2019 drought in a
European floodplain forest
Study 2: Drivers of productivity and its temporal stability in a tropical tree diversity
experiment
Study 3: Neighbourhood species richness and drought-tolerance traits modulate tree
growth and δ13C responses to drought
Study 4: Species richness stabilizes productivity via asynchrony and drought-
tolerance diversity in a large-scale tree biodiversity experiment
4. General discussion
4.1. Summary of main findings
4.2. Hotter droughts and forest functioning
4.3. Diversity signals across spatial scales
4.4. Diversity signals across temporal scales
4.5. Diversity facets
4.6. Context dependency and transferability
4.7. Implications for forest management in the 21st century
5. Outlook and future research
5.1. Observation and experimentation under hotter droughts
5.2. Response variables
5.3. Diversity facets
5.4. Drought-tolerance traits
5.5. Zooming in
5.6. Zooming out
5.7. From understanding to use of BEF relationships
6. Conclusion
7. Summary
8. Zusammenfassung
9. References
Acknowledgements
Author contribution statements
Curriculum vitae
List of publications
Selbstständigkeitserklärung
|
7 |
Land-use impacts on biodiversity and ecosystem functioning of complex multitrophic communitiesBarnes, Andrew D. 19 November 2015 (has links)
No description available.
|
8 |
Experimental biodiversity enrichment in an oil-palm plantationGérard, Anne 15 November 2016 (has links)
Die großflächige Umwandlung von tropischen Wäldern hat zu dramatischen Verlusten von Biodiversität und assoziierten Ökosystemdienstleistungen und –funktionen geführt. Indonesien ist ein besonders schwerwiegendes Beispiel für den Verlust von Waldflächen und Biodiversität. Landumnutzungen, in starkem Maße durch den Anbau von Ölpalmen vorangetrieben, stellen eine erhebliche Bedrohung für die außergewöhnlich hohe Biodiversität des Landes dar. Landwirtschaftssysteme, wie Agroforstsysteme, können hingegen genutzt werden, um die Biodiversität und Ökosystemfunktionen in von Ölpalmen dominierten Landschaften zu erhöhen. In Regionen, in denen Ölpalmplantagen bereits die Landschaft dominieren, kann diese Erhöhung nur durch systematische Renaturierung erfolgen. Die zugrunde liegenden ökologischen und soziökonomischen Prozesse und damit verbundene Beschränkungen und Kompromisse von Renaturierungsmaßnahmen in von Ölpalmen dominierten Landschaften sind jedoch weitgehend unbekannt.
Um diese Wissenslücke zu schließen, habe ich mit Kollegen aus Deutschland und Indonesien ein Langzeitexperiment zur Erhöhung der Biodiversität aufgebaut. Wir haben experimentell Bäume in Form von „Inseln“ in eine konventionelle Ölpalmplantage gepflanzt und hierbei systematisch die Flächengröße, das Diversitätslevel und die Artzusammensetzung variiert. Wir haben hierfür sechs multifunktionale heimische Baumarten ausgewählt. Auf der Fläche der Bauminseln haben wir einen Teil der Ölpalmen gefällt, um die Lichtverfügbarkeit für die gepflanzten Bäume durch eine reduzierte Ölpalmdichte zu erhöhen.
In dieser Doktorarbeit stelle ich den Aufbau des Experiments vor und gebe einen breiten Einblick in anfängliche Auswirkungen des Experiments, indem ich ökologische Aspekte in Betracht ziehe, sowie Veränderungen hinsichtlich des Ernteertrags. Da die Zeit kurz nach der Pflanzung ein Nadelöhr für die Langzeitetablierung der Bäume darstellt, ist sie sehr kritisch, um die erwünschten Renaturierungserfolge in der Zukunft zu erzielen. Des Weiteren kann die Anfangszeit auch aus der Sicht der Landwirte eine entscheidende Hürde darstellen, da der Nutzen der Bauminseln erst lange Zeit nach ihrer Pflanzung entsteht.
Zuerst beschreibe ich Umweltvariablen und biotische Charakteristika der den experimentellen Flächen assoziierten Vegetation, Invertebraten und Vögel vor der Errichtung des Experiments, sowie anfängliche Auswirkungen des Experiments auf die Fauna. Ein Jahr nach der Errichtung des Experiments hatten die Baumpflanzungen einen insgesamt positiven Effekt auf die Artengemeinschaften von Vögeln und Invertebraten in der Plantage. Die Größe der Bauminseln wirkte sich lediglich auf die Diversität und Abundanz von Invertebraten positiv aus, die somit auf kleinskalige Veränderungen reagierten. Ausgehend von diesen Ergebnissen erwarte ich einen weiteren Anstieg der Biodiversität und Ökosystemfunktionen in der Zukunft.
Danach berichte ich über den Anwuchserfolg der Bäume und ermittle die wichtigsten Determinanten für den Wuchs und das Überleben der Bäume. Insgesamt sind die Bäume gut angewachsen, jedoch gab es große Unterschiede zwischen den Baumarten hinsichtlich relativer Höhenwachstums-, Dickenwachstums- sowie Überlebensraten. Arten mit hohen Wachstumsraten wiesen vorwiegend auch hohe Überlebensraten auf. Auf Versuchsflächenebene hatten Standortbedingungen, Flächengröße und Diversitätslevel der gepflanzten Bäume lediglich einen geringen Einfluss auf das mittlere Baumwachstum und die Überlebensrate. Auf Individuenebene habe ich signifikante Nachbarschaftseffekte festgestellt. Hohe benachbarte Bäume und die Distanz zu verbleibenden Ölpalmen begünstigten die Entwicklung der Bäume. Noch ist es zu früh zu entscheiden, welche der Baumarten sich generell am besten eignen, um Renaturierungsziele zu erreichen. Unterschiede in der anfänglichen Entwicklung liefern jedoch wichtige Informationen für eine zukünftige Bewertung der Arten.
Zuletzt präsentiere ich Auswirkungen des Experiments auf den Ölpalmertrag. Nach zwei Jahren waren die Erträge pro Ölpalmindividuum erhöht, sowohl auf als auch direkt neben den Versuchsflächen. Die geschätzten Ertragsänderungen für die verschiedenen Flächengrößen unter Einbezug von Ernteverlusten durch gefällte Ölpalmen sowie Effekte auf benachbarte Ölpalmen deuten darauf hin, dass die erhöhten Ernteerträge insbesondere in großen Bauminseln mindestens das Fällen von Ölpalmen kompensiert haben. Diese Ergebnisse, die in der frühen Phase der Bauminseletablierung erzielt wurden, sind vielversprechend für die Erarbeitung nachhaltiger Managementoptionen für Ölpalmplantagen, die ökologische und ökonomische Funktionen in Einklang bringen.
Die anfänglichen Auswirkungen waren stärker und insbesondere aus ökonomischer Perspektive profitabler als ich erwartet habe. Die Nachbarschaftseffekte und die Auswirkungen der experimentell veränderten Variablen waren bislang jedoch überwiegend schwach. Ich erwarte, dass diese Auswirkungen mit der Zeit stärker ausgeprägt sein werden. Durch Erkenntnisse, die aus zukünftigen Langzeitbeobachtungen des Experiments, das ich in dieser Doktorarbeit vorstelle, gewonnen werden, können Wissenslücken geschlossen werden. Somit kann die Ausarbeitung von Managementrichlinien für von Ölpalmen dominierten Landschaften ermöglicht werden, die sowohl ökologisch verbessert als auch ökonomisch lohnenswert sind. Diese Doktorarbeit stellt einen wesentlichen Beitrag zur generellen Beurteilung des Experiments dar, wodurch darüber hinaus auch neue Erkenntnisse für die Renaturierungswissenschaft gewonnen werden können.
|
9 |
Dominance vs. complementarity : a global analysis of the influence of plant functional community structure on ecosystem functioning measured as NDVIEngel, Thore January 2017 (has links)
Diversos estudos teóricos, experimentais e observacionais têm demonstrado que as relações entre a biodiversidade e as funções ecossistêmicas (BEF) são determinadas pela estrutura funcional da comunidade (ou seja, pela distribuição dos atributos das suas espécies constituintes). Isso pode ocorrer por meio de dois mecanismos mutuamente não exclusivos: (1) a hipótese de dominância (também denominada de efeito de relação de massa), na qual os processos ecossistêmicos são influenciados pela média ponderada na comunidade de um dado atributo funcional (CWM) considerado relevante; (2) a hipótese de complementaridade, na qual a maior variabilidade de um atributo funcional na comunidade (FD) é uma expressão da complementariedade de nicho, o que beneficia o desempenho dos processos ecossistêmicos. Embora ambos os mecanismos já tenham sido amplamente estudados em comunidades de plantas em pequenas escalas espaciais, análises globais considerando distintos biomas ainda são necessárias. Neste estudo, a relação entre biodiversidade e funcionamento dos ecossistemas foi avaliada com base na integração entre uma base de dados global de parcelas de vegetação (sPlot), uma base de dados de atributos de espécies de plantas (TRY) e dados do Índice de Vegetação por Diferença Normalizada (NDVI) obtidos por sensoriamento remoto. O objetivo foi verificar, simultaneamente, os efeitos de dominância e de complementaridade sobre a produção de biomassa vegetal em ecossistemas campestres em todo o mundo. Os dados sobre a estrutura funcional das comunidades (CWM e FD) foram obtidos a partir da base de dados sPLOT e TRY, utilizando para isso atributos funcionais de plantas ecologicamente relevantes. O NDVI, considerado como aproximação da produtividade da vegetação, representa uma medida do funcionamento do ecossistema e foi obtido a partir do produto MOD13Q do sensor MODIS, com resolução espacial de 250m. Para garantir que as medidas de NDVI fossem derivadas apenas de ecossistemas campestres, sem a interferência de outras fisionomias vegetais, foram descartadas as parcelas do sPlot com presença de paisagens heterogêneas no seu entorno mediante consulta a um mapa global de cobertura e uso da terra (Globcover2009). Para quantificar os efeitos independentes da dominância e da complementariedade sobre as variações no NDVI , com controle das variáveis climáticas, foi utilizada uma análise de regressão múltipla do tipo commonality. Os resultados demonstraram que o principal preditor da variação no NDVI correspondeu a um conjunto de atributos funcionais das espécies dominantes relacionados com o espectro de economia da comunidade vegetal (atributos fast-slow), indicando a prevalência da hipótese de dominância (R2 ajustado = 0,65). Os efeitos evidentes da dominância e os efeitos potenciais da complementariedade são discutidos no contexto da sua relação com os fatores abióticos, sendo que a precipitação pluviométrica, em particular, parece ter maior influência tanto sobre a composição de atributos quanto sobre a produtividade. Apesar de algumas limitações metodológicas, a abordagem inovadora utilizada neste trabalho pode ajudar a esclarecer as relações entre biodiversidade e funções ecossistêmicas em escala global, dentro de uma perspectiva integradora e baseada em dados. / Theoretical, experimental and observational studies show that biodiversity ecosystem functioning (BEF) relationships are determined by functional community structure (i.e. trait distributions in a community) through two mutually non-exclusive mechanisms: (1) The dominance hypothesis (a.k.a. mass ratio effect) links ecosystem processes to the community weighted mean (CWM) of a relevant effect trait. (2) The complementarity hypothesis states that higher variability of a trait value within a community (FD) reflects niche complementarity enhancing ecosystem processes. While both mechanisms have been extensively studied in plant communities at small spatial scales, there is a need for global analyses across biomes. Here, a data driven approach to the BEF question is presented integrating a global vegetation plot database with a trait database and remotely sensed NDVI. The objective of this study was to simultaneously evaluate dominance and complementarity effects in grassland systems worldwide. Data on functional community structure (CWM and FD) were obtained from the global vegetation plot database sPlot in combination with the plant trait database TRY using 18 ecologically relevant plant traits. Ecosystem functioning at the selected sPlot sites (n = 2941) was measured as NDVI at a spatial resolution of 250m using the MODIS product MOD13Q (annual peak NDVI being a proxy of productivity). The landcover map Globcover2009 was used for characterization of landscape heterogeneity and landcover at each site, and plots in heterogeneous non-grassland pixels were discarded. Multiple regression commonality analysis was used to disentangle the contributions of complementarity and dominance effects to the variation in NDVI, while controlling for climate variables (adjusted R2 = 0.65). The results show that a plant community economics spectrum referring to the “fast-slow traits” of the dominant species in the community was the strongest predictor of the NDVI values in the grassland systems (dominance effect). Both, evident dominance and potential complementarity effects are discussed against the background of their interplay with abiotic factors and it is noted that especially precipitation seems to drive trait composition and productivity. Despite methodological shortcomings, the novel approach presented in this paper is considered a step towards a more integrative data-driven BEF debate at the global scale
|
10 |
Dominance vs. complementarity : a global analysis of the influence of plant functional community structure on ecosystem functioning measured as NDVIEngel, Thore January 2017 (has links)
Diversos estudos teóricos, experimentais e observacionais têm demonstrado que as relações entre a biodiversidade e as funções ecossistêmicas (BEF) são determinadas pela estrutura funcional da comunidade (ou seja, pela distribuição dos atributos das suas espécies constituintes). Isso pode ocorrer por meio de dois mecanismos mutuamente não exclusivos: (1) a hipótese de dominância (também denominada de efeito de relação de massa), na qual os processos ecossistêmicos são influenciados pela média ponderada na comunidade de um dado atributo funcional (CWM) considerado relevante; (2) a hipótese de complementaridade, na qual a maior variabilidade de um atributo funcional na comunidade (FD) é uma expressão da complementariedade de nicho, o que beneficia o desempenho dos processos ecossistêmicos. Embora ambos os mecanismos já tenham sido amplamente estudados em comunidades de plantas em pequenas escalas espaciais, análises globais considerando distintos biomas ainda são necessárias. Neste estudo, a relação entre biodiversidade e funcionamento dos ecossistemas foi avaliada com base na integração entre uma base de dados global de parcelas de vegetação (sPlot), uma base de dados de atributos de espécies de plantas (TRY) e dados do Índice de Vegetação por Diferença Normalizada (NDVI) obtidos por sensoriamento remoto. O objetivo foi verificar, simultaneamente, os efeitos de dominância e de complementaridade sobre a produção de biomassa vegetal em ecossistemas campestres em todo o mundo. Os dados sobre a estrutura funcional das comunidades (CWM e FD) foram obtidos a partir da base de dados sPLOT e TRY, utilizando para isso atributos funcionais de plantas ecologicamente relevantes. O NDVI, considerado como aproximação da produtividade da vegetação, representa uma medida do funcionamento do ecossistema e foi obtido a partir do produto MOD13Q do sensor MODIS, com resolução espacial de 250m. Para garantir que as medidas de NDVI fossem derivadas apenas de ecossistemas campestres, sem a interferência de outras fisionomias vegetais, foram descartadas as parcelas do sPlot com presença de paisagens heterogêneas no seu entorno mediante consulta a um mapa global de cobertura e uso da terra (Globcover2009). Para quantificar os efeitos independentes da dominância e da complementariedade sobre as variações no NDVI , com controle das variáveis climáticas, foi utilizada uma análise de regressão múltipla do tipo commonality. Os resultados demonstraram que o principal preditor da variação no NDVI correspondeu a um conjunto de atributos funcionais das espécies dominantes relacionados com o espectro de economia da comunidade vegetal (atributos fast-slow), indicando a prevalência da hipótese de dominância (R2 ajustado = 0,65). Os efeitos evidentes da dominância e os efeitos potenciais da complementariedade são discutidos no contexto da sua relação com os fatores abióticos, sendo que a precipitação pluviométrica, em particular, parece ter maior influência tanto sobre a composição de atributos quanto sobre a produtividade. Apesar de algumas limitações metodológicas, a abordagem inovadora utilizada neste trabalho pode ajudar a esclarecer as relações entre biodiversidade e funções ecossistêmicas em escala global, dentro de uma perspectiva integradora e baseada em dados. / Theoretical, experimental and observational studies show that biodiversity ecosystem functioning (BEF) relationships are determined by functional community structure (i.e. trait distributions in a community) through two mutually non-exclusive mechanisms: (1) The dominance hypothesis (a.k.a. mass ratio effect) links ecosystem processes to the community weighted mean (CWM) of a relevant effect trait. (2) The complementarity hypothesis states that higher variability of a trait value within a community (FD) reflects niche complementarity enhancing ecosystem processes. While both mechanisms have been extensively studied in plant communities at small spatial scales, there is a need for global analyses across biomes. Here, a data driven approach to the BEF question is presented integrating a global vegetation plot database with a trait database and remotely sensed NDVI. The objective of this study was to simultaneously evaluate dominance and complementarity effects in grassland systems worldwide. Data on functional community structure (CWM and FD) were obtained from the global vegetation plot database sPlot in combination with the plant trait database TRY using 18 ecologically relevant plant traits. Ecosystem functioning at the selected sPlot sites (n = 2941) was measured as NDVI at a spatial resolution of 250m using the MODIS product MOD13Q (annual peak NDVI being a proxy of productivity). The landcover map Globcover2009 was used for characterization of landscape heterogeneity and landcover at each site, and plots in heterogeneous non-grassland pixels were discarded. Multiple regression commonality analysis was used to disentangle the contributions of complementarity and dominance effects to the variation in NDVI, while controlling for climate variables (adjusted R2 = 0.65). The results show that a plant community economics spectrum referring to the “fast-slow traits” of the dominant species in the community was the strongest predictor of the NDVI values in the grassland systems (dominance effect). Both, evident dominance and potential complementarity effects are discussed against the background of their interplay with abiotic factors and it is noted that especially precipitation seems to drive trait composition and productivity. Despite methodological shortcomings, the novel approach presented in this paper is considered a step towards a more integrative data-driven BEF debate at the global scale
|
Page generated in 0.1794 seconds