• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 670
  • 89
  • 43
  • 43
  • 43
  • 43
  • 43
  • 43
  • 42
  • 40
  • 10
  • 9
  • 4
  • 2
  • 2
  • Tagged with
  • 1081
  • 305
  • 235
  • 228
  • 218
  • 198
  • 142
  • 130
  • 123
  • 106
  • 85
  • 84
  • 81
  • 81
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Ammonium cycling and nitrifier community composition in eutrophic waters affected by cyanobacterial harmful algal blooms

Hampel, Justyna J. 23 May 2019 (has links)
No description available.
752

Interactive effects of wastewater effluent on stream food webs

Marshall, Melanie M. 05 August 2019 (has links)
No description available.
753

The Influence of Diet and Foraging Behavior on Carotenoid Ornaments in the Brown Booby (<i>Sula leucogaster</i>)

Michael, Nathan January 2020 (has links)
No description available.
754

Dual Isotope Analysis of Denitrification in Stormwater Basins

Morgan, Naomi January 2021 (has links)
Bioretention basins are a stormwater control method implemented in urban areas to curtail runoff and pollution; however, recent studies show inconsistent nitrate (NO3-) removal, and in many cases average nitrate concentrations in basin outflow are higher than inflow. Microbial denitrification to promote nitrate removal can be enhanced by using underdrains in basin design that provide anoxic conditions. This study examines the impact of basin design and storm characteristics (precipitation intensity and antecedent dry period length) on microbial denitrification efficacy. Three basins in the Philadelphia area were selected for storm sampling: a large (~0.6 ha) wet basin without internal water storage, a small (~0.02 ha) basin without internal water storage, and a medium-sized (~0.1 ha) basin with internal water storage and a raised underdrain. In addition, three laboratory bioretention columns with underdrain configurations at the bottom, middle, and top of an internal water storage zone were sampled under steady-state and transient flow conditions. Samples collected as time series and grab samples during storm events were analyzed for nitrate concentrations and nitrate isotopes. Because microbes preferentially consume lighter nitrate isotopes (14N and 16O), stable isotope analysis offers an indication of denitrification. Stormwater outlet nitrate concentrations were lower than the inlet in the large suburban basin, similar to the inlet in the small suburban basin, and higher than the inlet in the urban basin. Differences in storm intensity and dry periods did not appear to increase or decrease nitrate concentrations in any basin, suggesting that basin design is a more dominant factor. The values of δ15N and δ18O in basin samples showed stormwater mixing without denitrification in all three basins. Only in the basin with water internal storage were periods of denitrification in samples observed, based on heavier δ15N and δ18O ratios. In laboratory studies, a lower underdrain configuration is preferred to promote denitrification based on heavier isotopic ratios and enrichment calculations. Bioretention columns had the largest enrichment factors (up to -5.3‰ ɛ 15N and -5.0‰ ɛ 18O) during steady-state flow. Lower enrichment factors associated with the low-intensity storm (-2.6‰ ɛ 15N and -1.3‰ ɛ 18O) show that transient flow disrupted denitrification rates. Field enrichment factors were greater than those in the columns (up to -11.9‰ ɛ 15N and -7.4‰ ɛ 18O). Even though nitrate decreased consistently over three storms, isotopic ratios did not exhibit these denitrification trends until at least eight hours after the onset of the storm events. Therefore, decreases in nitrate concentration alone are an unreliable assessment of denitrification efficacy. This study suggests that isotope analysis should be considered to better understand the conditions that promote denitrification. / Geology
755

The Ecological Significance of Phyllosphere Leaf Traits on Throughfall Hydrology, Biogeochemistry, and Leaf Litter Quality among Oak (Quercus Spp.) Species in the Southeastern United States

Limpert, Katy Elizabeth 12 August 2016 (has links)
Oaks (Quercus spp.) are a dominant genus in forests across the United States that have been declining due to fire suppression and forest mesophication. The reduction of these species may alter forest hydrologic and biogeochemical cycling. Canopy-derived nutrients and interspecific temporal distribution of leaves were quantified under oak and hickory (Carya spp.) species in Mississippi during 2014-2016. Throughfall quantity and chemistry were measured during every storm event under oak and hickory species. Interspecific leaf litter was collected weekly to quantify the timing of leaf fall and leaf litter nutrient content. Throughfall volume and solute fluxes were impacted by seasonality. Mg2+ and DOC were greater in throughfall than precipitation. Leaf loss was slower in oak species during leaf fall. Slower decay in oak litter may correlate with higher C/N ratios compared to hickory species. Results of this study indicate oak species are an important contributor to forest hydrology and nutrient cycling.
756

A Biogeochemistry Approach to Geographic Origin and Mortuary Arrangement at the Talgua Cave Ossuaries, Olancho, Honduras

Warner, Monica Michelle 07 May 2016 (has links)
Isotopic assays, including stable carbon, stable oxygen, and radiogenic strontium were measured for 37 individuals from the Talgua cave ossuaries to understand human movement and mortuary practice during Formative Period Honduras. Likelihood assignment models demonstrated that the individuals had diverse childhood geographic origins within the surrounding valleys. This shows that different kin or ethnic groups from diverse geographic origins were utilizing the ossuaries. Five possible ‘non-local’ individuals were identified from the radiogenic strontium and stable oxygen isotope datasets, suggesting minimal human movement into northeast Honduras from outside Lower Central America. The low number of ‘non-local’ individuals at Talgua Caves also suggests that trade items were acquired by down-the-line exchange processes rather than through a long-distance trade connection. This type of trade network and bioarchaeological evidence of limited ‘non-local’ individuals at Talgua Caves suggests the surrounding region was culturally distinct from Mesoamerica during the Formative Period.
757

Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments

Koprivnjak, Jean-François January 1991 (has links)
No description available.
758

Evaluation of switchgrass as an energy feedstock : economic feasibility, and carbon dioxide accounting

Tayara, Ahmad January 1994 (has links)
No description available.
759

Effects of Phosphorus and Nitrogen on the Fates of Nitrogen in Soils of Northern Hardwood Forests

Butler, Samuel J. 12 July 2022 (has links)
No description available.
760

Holocene Paleo-environmental Variability Reconstructed from a Lake Sediment Record from Southeast Greenland

De Wet, Gregory A 01 January 2013 (has links) (PDF)
Arctic climate variability over the Holocene has been both extensive and, at times, abrupt. Current understanding of these changes is still quite limited with few high-resolution paleoclimate records available for this period. In order to place observed and predicted 21st century climate change in perspective, reliable and highly resolved paleo-reconstructions of Arctic climate are essential. Using an 8.5 m sediment core from Nanerersarpik Lake, this project will characterize climate changes during the Holocene, including the deglacial transition, the rapid changes that are known to have occurred around 8,200 years ago, the transition from Holocene thermal maximum (HTM) to the colder Neoglacial period, and intervals of abrupt climate change during the late Holocene such as the Medieval Warm Period and Little Ice Age. The 8.5 m sediment core from Nanerersarpik contains a dense gray clay in the lower 0.5m. The upper 8.0m of sediment is light brown and organic-rich with centimeter to half-centimeter laminations, interrupted by mass-movement events. Paleoenvironmental conditions have been interpreted using magnetic susceptibility, grain size, biogenic silica, TOC, C/N, organic lipid biomarkers, and δ13Corg, as well as with high-resolution spectral reflectance and scanning XRF profiles. These parameters allow us to interpret changes in autochthonous productivity and clastic input throughout the Holocene. A chronology for the record has been established using 7 radiocarbon dates. The age-model indicates Nanerersarpik Lake contains an ~8,500-yr sediment record with a linear age/depth relationship and a sedimentation rate of 0.1cm/yr, allowing for potentially decadal scale resolution of environmental changes. An abrupt transition from dense glacial clay to laminated organic rich sediment occurs near the base of the core. This is interpreted as marking the retreat of glacial ice from the catchment around 8,250 cal yr BP. High frequency variations dominate the spectral, scanning XRF, and magnetic susceptibility data and indicate some correlation with Holocene climate intervals. Biogenic silica and TOC analysis indicate broad scale changes in primary productivity generally consistent with known Holocene climatic intervals: the deglacial period, the Holocene Thermal Maximum, and the Neoglacial, with high variability during the late Holocene. High resolution biogenic silica data over the past 1500 cal yr BP show some correspondence to Greenland Ice Core paleotemperature reconstructions, suggesting biogenic silica may be responding to temperature on short timescales and should be used as a paleo-environmental proxy in future studies. Alkenones and glycerol dialkyl glycerol tetraethers were present in Nanerersarpik sediments, suggesting this location or others in SE Greenland might be suitable for future high-resolution paleotemperature studies using biomarkers.

Page generated in 0.0757 seconds