Spelling suggestions: "subject:"geochemistry"" "subject:"biogeochemical""
761 |
A High-Resolution Temperature Record from Lakes of the Lofoten Islands, Northwestern Norway based on a New Uk37 Temperature Calibration from in situ MeasurementsHuang, Xiaohui 01 January 2011 (has links) (PDF)
Water filters and sediment trap samples were collected weekly from late May to early September 2009 from four lakes of the Lofoten archipelago, northwestern Norway, and were used to explore the applicability of the alkenone unsaturation index (UK37) for temperature reconstruction in limnic systems in the area. For the first time, we observed the occurrence of long-chain alkenones (LCAs) within the water columns of lakes in this region. Water filters from two of the four studied lakes contained measurable concentrations of alkenones that were restricted to spring turnover and disappeared with the onset of summer stratification. These results indicate that alkenones in the lake sediment of these lakes reflect biological production and temperature during lake mixing, taking place in late spring to early summer. Measurements from sediment trap material collected over the sampling season combined with water temperature measurements from automated data loggers provide an in situ calibration of the alkenone paleothermometer (Temperature = 33.0 x UK37 + 22.8; N=10; R2=0.95). Notably, this calibration reveals a UK37 sensitivity to temperature (i.e., the slope of the relationship) that is very similar to previous calibrations reported from both marine and lacustrine environments. LCAs can therefore serve as the first quantitative proxy for reconstructing past temperature variability from the Lofoten Islands.
Based on this temperature calibration, a high-resolution temperature record was reconstructed over the past millennium, which shows unprecedented lake surface temperature warming during the past decades.
|
762 |
7700 Years of Holocene Climatic Variability in Sermilik Valley, Southeast Greenland Inferred From Lake SedimentsDavin, Samuel H 01 January 2013 (has links) (PDF)
During the latter half of the 20th century until present day there has been an unprecedented rise in global annual mean temperatures accompanied by rising sea levels and a decrease in Northern Hemisphere snow cover, which if it continues will lead to widespread disruption of climate patterns, ecosystems, and present-day landscapes. It is therefore of critical importance to establish an expanded network of paleoclimate records across the globe in order to better assesses how the global climate system has changed in the past, that we may create a metric by which to address modern change. Herein is presented a7,700 years record of Holocene climatic and environmental variability in Sermilik Valley, located on Ammassalik Island, SE Greenland. This objective of this study is to determine the timing of major Holocene climate transitions as expressed in the physical, elemental, and geochemical parameters preserved in the 484 cm sediment record of Lower Sermilik Lake. Major transitions observed in this study include the deglaciation of Sermilik Valley, the onset and termination of the Holocene Climatic Optimum, the transition into neoglacial conditions, and the Little Ice Age.
|
763 |
Exploring Isotopic Signatures of Lake El'gygytgyn Sediments for Evidence of Anoxia and Methane Cycling over the Past 50,000 YearsHolland, Addie R. 01 January 2010 (has links) (PDF)
Compound specific isotope analysis of lake sediments is a powerful tool in deciphering evidence of changing climatic and paleoenvironmental conditions through time. Isotopic analysis of Lake El’gygytgyn pilot sediment cores, PG1351 and LZ1029, have contributed increased insight into paleoenvironmental interpretations regarding conditions of permanent ice cover and water column anoxia at the lake over the past 250 kyr. Bulk sediment δ15N was measured as a proxy for denitrification and a possible indicator for water column anoxia intensity. However, it appears that insufficient quantities of water column nitrate to fuel denitrification make its correlation with anoxia intensity ineffective. In pilot core LZ1029, compound-specific δ13C of alkanes, fatty acids, and alcohols were analyzed to determine the changing sources of organic matter as well as the source of a strong negative isotopic shift in the bulk sediment δ13C (-26‰ to -33‰) over the past 50 kyr. Results indicate that the majority of alkanes, fatty acids, and alcohols are long chain compounds consistent with a terrestrial plant origin, with increased aquatic contribution during the local last glacial maximum (LLGM). Among the compound classes examined, only the mid chain fatty acids display a strong LLGM depletion (δ13C = -43‰). Short chain fatty acids exhibit an LLGM depletion (δ13C = -35‰) similar to bulk sediment δ13C, while the δ13C trend of long chain alkanes, fatty acids, and alcohols differ from the bulk sediment δ13C trend, suggesting an autochthonous source of bulk isotope depletion. Evidence of methane cycling exists only in the presence and isotopic value of diplopterol (LLGM δ13C = -93.4‰), a biomarker for aerobic oxidation of methane. Two compounds indicative of archaeal lipids were present at considerable concentrations during the LLGM (394 and 668 µg/g TOC), but without the extreme negative δ13C associated with methanogenesis and methanotrophy. These results suggest insufficient generation of methane in the lake to have derived from such a large anaerobic archaeal methanogen community suggesting that archaea are not acting entirely as methanogens. Furthermore, it appears unlikely that a significant anoxic layer existed in the water column of Lake El’gygytgyn during the past ~50kyr. The results of this work will be applied to ongoing investigations on the newest cores from Lake El’gygytgyn, which represent the past 3.5 Myr.
|
764 |
Modeling the production and transport of dissolved organic carbon from heterogeneous landscapeYe, Changjiang 01 January 2013 (has links) (PDF)
Variation of dissolved of organic carbon concentration in stream water is a consequence of process changes in the surrounding terrestrial environment. This study will focus on 1) Identify significant environmental factors controlling the spatial and temporal variation of DOC in terrestrial ecosystems of a watershed southeast of Boston, Massachusetts; 2) Model the DOC leaching from different land cover and examine the relationship between leaching flux and in-stream DOC. Our hypothesis is variations of in stream DOC is closely related to watershed properties and environmental factors at annual, seasonal, and daily scales, especially land cover type, watershed size and hydrology. To explore the relationship of hydrology and DOC variation at ungauged sub-basin, we examined the effectiveness of using simulated stream flow from Soil Water Assessment Tool (SWAT) to study terrestrial DOC dynamics. Our results demonstrated that streamflow, drainage area, and percent of wetland and forest were particularly strong predictors in watersheds with a large proportion of developed area. The resulting linear model is able to explain about 70.2% (R2=0.702) and 65.1% (R2=0.651) of the variance of in-stream DOC concentrations at seasonal and annual scales respectively. Results also suggest that more frequent DOC sampling is necessary to establish the quantitative relationship between simulated stream flows from the SWAT and in-stream DOC concentrations at daily scale. The physically based ecosystem model developed in this study shows that DOC leaching from various land cover are highly correlated (up to 80%) with in-stream DOC by using ecological process with incorporated different hydrological pathways. It shows that leaching of DOC from soil is a significant contributor to the in-stream DOC. The production of DOC is largely controlled by the vegetation type and soil texture. Considering the hydrologic control on DOC transport with different pathways of water at finer spatial and temporal scale highlights the need to identify the quantitative relationships between water and carbon flux.
|
765 |
Wind Cave: Direct Access to a Deep Subsurface Aquifer Reveals a Diverse Microbial Community and Unusual Manganese MetabolismHershey, Olivia Suzanne 30 November 2021 (has links)
No description available.
|
766 |
THE ROLE OF METAL OXIDE BIOGEOCHEMISTRY ON SEDIMENT NICKEL BIOAVAILABILITY TO BENTHIC BIOTAMarques Mendonca, Raissa 22 November 2022 (has links)
No description available.
|
767 |
A COMPARISON OF SOIL NITROGEN AVAILABILITY ALONG HILLSLOPES FOR A PREVIOUSLY MINED RECLAIMED WETLAND AND TWO NATURAL WETLANDS IN FORT MCMURRAY, ALBERTAThorne, Chelsea 11 1900 (has links)
In situ measurements of soil nitrogen dynamics is a potential method for evaluating the health of constructed wetlands following oil sands mining. The objective of this study is to measure and compare the soil nitrogen availability of a reclaimed fen (Sandhill fen) with a nutrient-rich reference fen (Poplar fen) and a nutrient-poor reference fen (Pauciflora fen) in the Athabasca oil sands region of northern Alberta. Total Nitrogen (TN), Nitrate (NO3-) and Ammonium (NH4+) supply rates were determined along wetland hillslope transects using Western Ag Innovations Plant Root Simulator (PRSTM) probes at all three sites in 2014. Net N mineralization, net nitrification and net ammonification were determined simultaneously using the buried polyethylene bag sampling method. Overall, TN supply rates were greatest at the poor fen and least at the constructed Sandhill fen. In contrast, mineralization was greatest at the rich fen but again least at the Sandhill fen. Mineralization at the Sandhill fen was controlled evenly by ammonification and nitrification, whereas the two natural sites were controlled by ammonification. Relatively low N supply rates and mineralization at the Sandhill fen were likely due to lower soil organic matter and limited soil moisture in these newly constructed substrates. Spatial differences along the hillslopes also varied among sites. The Sandhill fen had higher TN supply rates at the upslope positions but no significant differences in net N mineralization rates along the hillslopes. The rich fen also had higher TN supply rates at the upslope but greatest mineralization rates downslope. These results highlight the importance of N storage and transport processes and offer insight into the N status of a constructed fen. / Thesis / Master of Science (MSc)
|
768 |
Metabolic and oceanographic consequences of iron deficiency in heterotrophic marine protozoaChase, Zanna. January 1996 (has links)
No description available.
|
769 |
Carbon storage in switchgrass (Panicum virgatum L.) and short-rotation willow (Salix alba x glatfelteri L.) plantations in southwestern QuébecZan, Claudia. January 1998 (has links)
No description available.
|
770 |
An examination of carbon flow in a Bay of Fundy salt marshConnor, Richard, 1969- January 1995 (has links)
No description available.
|
Page generated in 0.0782 seconds