• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biogenic silica dynamics of Arctic marine ecosystems

Giesbrecht, Karina 05 April 2019 (has links)
Marine diatoms are the dominant primary producers in coastal and shelf regions, and contribute to about 20% of the annual photosynthesis on Earth. Diatoms also exert a major control on the marine silicon (Si) cycle through the formation of biogenic silica (bSiO2). Continental shelves account for half of the total marine area in the Arctic, yet our knowledge of the cycling of Si for this critically climate-impacted region is limited. The overall objective of this thesis was to improve our understanding of marine bSiO2 dynamics and Si cycling in marine Arctic and Subarctic ecosystems using novel techniques. Phytoplankton and nutrient observations, including dissolved and particulate silica concentrations, are presented from a period of ten years within five biological ‘hotspots’ in the Bering and Chukchi Seas. The first measurements of bSiO2 production and dissolution rates are also presented from a period of four years at the same sites. Results from this work show that (i) although interannual variability is high, diatoms are responsible for most of the high primary productivity in the Bering and Chukchi Seas, (ii) bSiO2 is primarily re-dissolved within the euphotic zone rather than exported, and (iii) phytoplankton phenology and marine Si cycling are affected by short-term climatic changes in this region. We also present the first measurements of bSiO2 production rates along a transect from the Canadian Arctic Archipelago (CAA), through Baffin Bay and into the Labrador Sea. We show that diatoms are both abundant and productive throughout these regions in summer, despite widespread Si limitation in the low-nutrient surface waters. Finally, we also investigated the natural variations in the Si isotopic composition of silicic acid (30Si(OH)4). On a transect through the Bering and Chukchi Seas, Canada Basin and CAA, and finally to Baffin Bay and the Labrador Sea, we found that δ30Si(OH)4 signals reflect water mass composition, the dissolution of bSiO2 throughout the water column, and the biological utilization of Si in surface waters. Ultimately, this work provides insight into the processes controlling marine Si cycling within the Arctic and its links to the global marine Si cycle and other biogeochemical cycles. / Graduate / 2020-03-13
2

Influence of Biogenic Silica from Terrestrial Vegetation on Riverine Systems and Diatom Evolution

Opalinska, Beata 04 July 2014 (has links)
Presently within the scientific literature no terrestrial biogenic silica models exist that compare by magnitude, processes transporting silica. Change in vegetation type has the potential to alter dissolved concentrations of Si in rivers and ultimately the oceans. Diatoms greatly depend on Si concentrations for growth, and as a result land cover change may have influenced onset diatom radiation during the Cenozoic. To expand our understanding of this cycle, a terrestrial biogenic silica model is proposed. This model accounts for biogenic silica production, dissolution and leaching through soils, as well as providing estimates for annual silica soil storage. A case study performed using the constructed biogenic silica model, showed an increase in oceanic DSi concentration during the Miocene (period of diatom diversification). However, this increase does not appear to have been sufficient to trigger global diatom radiation, suggesting multiple geographically isolated locations for this diversification.
3

The impact of the 1989 Exxon Valdez oil spill on phytoplankton as seen through the dinoflagellate cyst record

Genest, Maximilien 28 September 2018 (has links)
Our knowledge of how oil spills affect coastal environments is severely limited by the shortage of research that addresses the impact of these events on phytoplankton, the single most important group of organisms in the marine ecosystem. This scarcity of knowledge is mainly attributed to the absence of baseline data, preventing the comparison of pre- and post-spill populations. This unique study aims to identify how dinoflagellates and diatoms, the two major groups of phytoplankton in coastal marine environments, have been affected by the 1989 Exxon Valdez oil spill in Prince William Sound (PWS), Alaska. To do this, sedimentary records of dinoflagellate cysts, produced during a dinoflagellate's life cycle and preserved in the sediment, and biogenic silica, a proxy for diatom abundance, were analyzed prior to, during and after the oil spill. The analysis of two well-dated cores in PWS reveals marked increases during the oil spill in the concentrations of total cysts of the species Operculodinium centrocarpum sensu Wall and Dale, (1966) and Dubridinium spp. Total cyst concentrations doubled in core P-10 from 362 to 749 per g, while in core P-12 the increase was from 1175 to 1771 cysts g-1. During this peak in cyst concentrations, total concentrations were 3 and 2 standard deviations greater than the mean in cores P-10 and P-12, respectively. Dubridinium spp. showed a five and sevenfold increase in concentrations in cores P-10 (4 to 20 cysts g-1) and P-12 (16 to 110 cysts g-1), respectively, while O. centrocarpum sensu Wall and Dale, (1966) doubled in concentrations in the two cores (P-10: 117 to 276 cysts g-1; P-12: 268 to 495 cysts g-1). Biogenic silica values did not show significant changes throughout the cores, with values varying between 8% and 9% in core P-10 and 9.0% to 10.9% in core P-12. These changes lie within or very close to the standard deviation of the analyzed standards, suggesting that much of the changes could be analytical noise. The dinoflagellate cyst signals seen in this study are comparable to those seen as a result of nutrient enrichment in estuarine systems, suggesting that the 1989 Exxon Valdez oil spill and its remediation had a stimulatory effect on some taxa of cyst- producing dinoflagellates. This impact appears to be short-lived, with cyst concentrations returning to pre-spill levels within two years of the event. The lack of change in diatom abundance, on the other hand, suggest that diatom abundance remained relatively constant during the entirety of the sample period. / Graduate / 2020-07-10
4

Environmental impacts of early metallurgy in Moshyttan : A study of one of Europe's oldest blast furnaces, using three lakes records in Nora bergslag

Myrstener, Erik January 2013 (has links)
The aim of this study was to assess the environmental effects of Moshyttan, one of the earliest known blast furnaces in Europe (ca. 11th century). The study was based on the analysis of three lake records in the immediate surroundings of the smelter. Fickeln lies directly downstream and is the main recipient of waterborne pollution. Mosjökälla lies directly upstream and served as the main water reservoir for the water-powered bellows. Kramptjärnen lies 1 km to the NW in a separate catchment and acts as a reference. The data includes 31 elements analyzed by X-ray fluorescence spectroscopy (XRF), organic content inferred from loss on ignition (LOI), biogenic silica (BSi) modeled from Fourier-transform infrared spectroscopy (FT-IRS) for all lakes and diatom counts for Fickeln. Two other studies provided dating of slag from the smelter and pollen- and geochemical data from Fickeln. The results show that the metallurgy and associated activities (e.g. agriculture, forest grazing and charcoal production) led to eutrophication and alkalization in Fickeln. This is indicated by the diatom community that in the background is dominated by benthic genera indicative of oligotrophy and dystrophy (Frustilia, Brachisyra and Eunotia) that during the active smelter phase is replaced by pelagic genera indicative of eutrophy (Aulacoseira and Asterionella). BSi also decreases after smelter establishment, which speculatively could indicate an overall decrease in diatom production. At the same time, a suite of elements commonly associated with iron processing (Fe, Pb and Zn) increase in the sediment.
5

Isotope-based reconstruction of the biogeochemical Si cycle : Implications for climate change and human perturbation

Sun, Xiaole January 2012 (has links)
The global silicon (Si) cycle is of fundamental importance for the global carbon cycle. Diatom growth in the oceans is a major sequestration pathway for carbon on a global scale (often referred to as the biological pump). Patterns of diatoms preserved in marine sediment records can reveal both natural and anthropogenic driven environmental change, which can be used to understand silicon dynamics and climate change. Si isotopes have been shown to have great potential in order to understand the Si cycle by revealing both past and present patterns of dissolved Si (DSi) utilization, primarily when diatoms form their siliceous frustules (noted as biogenic silica, BSi). However, studies using Si isotopes are still scarce and only a few studies exist where stable Si isotopes are used to investigate the biogeochemical Si cycle in aquatic systems. Therefore, this thesis focuses on developing analytical methods for studying BSi and DSi and also provides tools to understand the observed Si isotope distribution, which may help to understand impacts of climate change and human perturbations on marine ecosystems. The Baltic Sea, one of the biggest estuarine systems in the world, was chosen as the study site. BSi samples from a sediment core in Bothnian Bay, the most northern tip of the Baltic Sea, and diatom samples from the Oder River, draining into the southern Baltic Sea were measured and reported in Paper II and III, after establishing a method for Si isotope measurements (Paper I). Si isotope fractionation during diatom production and dissolution was also investigated in a laboratory-controlled experiment (Paper IV) to validate the observations from the field. The major result is that Si isotope signatures in BSi can be used as an historical archive for diatom growth and also related to changes in climate variables. There is isotopic evidence that the Si cycle has been significantly altered in the Baltic Sea catchment by human activities. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
6

Paleolimnological evidence of the effects of recent cultural eutrophication and climatic variability during the last 300 years in Lake Malawi, East Africa

Puchniak, Megan January 2005 (has links)
Lake Malawi is the second largest lake in Africa, supporting diverse populations of endemic cichlids and supplying essential water resources to Malawi, Mozambique and Tanzania. However, population growth, rapid deforestation and intensive agriculture, especially in the southern catchments, have accelerated soil erosion during the last half century. These anthropogenically-disturbed catchments have caused rivers to transport greater sediment loads into Lake Malawi than rivers within forested catchments. Lake Malawi?s immense size and oligotrophic nature may retard detection of inputs of external contaminants. Reversing the effects of increased nutrient loading to Lake Malawi once observed would likely take generations, as the residence time of water is over 140 years. Therefore, sensitive metrics are required to assess the effects of land use change and climate variability in Lake Malawi in advance of deleterious effects. In this study, paleolimnological analyses of four sediment cores collected in 1997 and 1998 along a longitudinal transect of Lake Malawi, dated with <sup>210</sup>Pb analyses and analyzed for biogenic silica and sedimentary diatom assemblages, were used to create a long-term water quality dataset. These four sites span gradients of land use and latitude in order to reconstruct limnological conditions over the whole lake during the last 300 years. Paleoecological results indicate that patterns of diatom assemblage change are not uniform lake wide. Southern cores contain evidence of nutrient enrichment starting as early as ca. 1940, indicated by increased silica, carbon and nitrogen burial. By ca. 1970, increased rates of sedimentation, diatom influx and changes in diatom community composition, characterized by increased percent abundance of eutrophic diatom taxa, are attributable to accelerated enrichment by terrestrial soil erosion. The succession of diatoms in southern Lake Malawi begins with high percent abundance of <i>Aulacoseira nyassensis</i> and <i>Fragilaria africana</i>, which thrive in nutrient-rich waters, followed by a shift towards diatom taxa with reduced silica requirements by ca. 1980 (e. g. <i>Stephanodiscus nyassae, S. minutulus, S. muelleri, Cyclostephanos</i> and small <i>Nitzschia</i> species. ), a pattern comparable to the eutrophication-induced decline in silica to phosphorus ratios in Lake Victoria. In Lake Malawi, evidence of eutrophication extends to the mid lake as indicated by similar diatom assemblage changes in the sediment core from the central region. Diatom stratigraphies from the north end of the lake indicate no observable impacts of land use change on the northern basin of Lake Malawi during the past 350 years. However, a nine-meter rise in water level ca. 1860 AD appears to have resulted in elevated diatom influxes at that time comparable to the recent eutrophication-induced diatom influxes of the southern cores. The effects of this rise in water level was recorded in all three measured sites, southern, central and northern Lake Malawi, indicating lake-wide increased productivity, yet changes to the diatom community composition were imperceptible. This study shows evidence of recent cultural eutrophication altering limnological conditions with impacts to the biogeochemical cycling of silica, the available silica to phosphorus ratios and the biotic communities of a large portion of Lake Malawi. Thus, providing an early warning that proper stewardship of Lake Malawi requires effective management of land-use practices within the catchment to reduce soil erosion and avoid widespread water quality deterioration of this great lake.
7

Paleolimnological evidence of the effects of recent cultural eutrophication and climatic variability during the last 300 years in Lake Malawi, East Africa

Puchniak, Megan January 2005 (has links)
Lake Malawi is the second largest lake in Africa, supporting diverse populations of endemic cichlids and supplying essential water resources to Malawi, Mozambique and Tanzania. However, population growth, rapid deforestation and intensive agriculture, especially in the southern catchments, have accelerated soil erosion during the last half century. These anthropogenically-disturbed catchments have caused rivers to transport greater sediment loads into Lake Malawi than rivers within forested catchments. Lake Malawi?s immense size and oligotrophic nature may retard detection of inputs of external contaminants. Reversing the effects of increased nutrient loading to Lake Malawi once observed would likely take generations, as the residence time of water is over 140 years. Therefore, sensitive metrics are required to assess the effects of land use change and climate variability in Lake Malawi in advance of deleterious effects. In this study, paleolimnological analyses of four sediment cores collected in 1997 and 1998 along a longitudinal transect of Lake Malawi, dated with <sup>210</sup>Pb analyses and analyzed for biogenic silica and sedimentary diatom assemblages, were used to create a long-term water quality dataset. These four sites span gradients of land use and latitude in order to reconstruct limnological conditions over the whole lake during the last 300 years. Paleoecological results indicate that patterns of diatom assemblage change are not uniform lake wide. Southern cores contain evidence of nutrient enrichment starting as early as ca. 1940, indicated by increased silica, carbon and nitrogen burial. By ca. 1970, increased rates of sedimentation, diatom influx and changes in diatom community composition, characterized by increased percent abundance of eutrophic diatom taxa, are attributable to accelerated enrichment by terrestrial soil erosion. The succession of diatoms in southern Lake Malawi begins with high percent abundance of <i>Aulacoseira nyassensis</i> and <i>Fragilaria africana</i>, which thrive in nutrient-rich waters, followed by a shift towards diatom taxa with reduced silica requirements by ca. 1980 (e. g. <i>Stephanodiscus nyassae, S. minutulus, S. muelleri, Cyclostephanos</i> and small <i>Nitzschia</i> species. ), a pattern comparable to the eutrophication-induced decline in silica to phosphorus ratios in Lake Victoria. In Lake Malawi, evidence of eutrophication extends to the mid lake as indicated by similar diatom assemblage changes in the sediment core from the central region. Diatom stratigraphies from the north end of the lake indicate no observable impacts of land use change on the northern basin of Lake Malawi during the past 350 years. However, a nine-meter rise in water level ca. 1860 AD appears to have resulted in elevated diatom influxes at that time comparable to the recent eutrophication-induced diatom influxes of the southern cores. The effects of this rise in water level was recorded in all three measured sites, southern, central and northern Lake Malawi, indicating lake-wide increased productivity, yet changes to the diatom community composition were imperceptible. This study shows evidence of recent cultural eutrophication altering limnological conditions with impacts to the biogeochemical cycling of silica, the available silica to phosphorus ratios and the biotic communities of a large portion of Lake Malawi. Thus, providing an early warning that proper stewardship of Lake Malawi requires effective management of land-use practices within the catchment to reduce soil erosion and avoid widespread water quality deterioration of this great lake.
8

Impact des conditions nutritionnelles sur la dissolution de la silice biogénique des diatomées à travers l'étude de la variabilité de la structure biphasique du frustule / No title

Boutorh, Julia 14 February 2014 (has links)
Les diatomées sont des micro-algues qui participent à hauteur de 35 à 75 % à la production primaire océanique et qui sont les acteurs majeurs du cycle biogéochimique du silicium (Si) dans l’océan. Comprendre les mécanismes qui affectent la dissolution de la silice biogénique (bSiO2) constituant le frustule des diatomées est nécessaire afin d’améliorer la compréhension du cycle océanique du Si. En période estivale, la majorité de l’océan ouvert est limitée par de faibles disponibilités en éléments nutritifs. Les travaux réalisés dans cette thèse ont donc pour objectif majeur d’étudier l’effet de l’environnement nutritionnel des diatomées sur la dissolution et l’export de silice biogénique (bSiO2). Cette étude s’est focalisée sur les limitations en fer (Fe), en Si et en azote (N), c'est-à-dire sur les éléments nutritifs dont les faibles concentrations en période estivale limitent la production de diatomées dans une grande majorité de l’océan mondial. Une des originalités de cette thèse consiste en l’étude de la limitation en cuivre (Cu), dont les impacts sur la composition élémentaire et la dissolution des diatomées ont été peu étudiés. Les effets des conditions limitantes en micronutriments ont été étudiés sur la diatomée pennée Pseudo-nitzschia delicatissima tandis que les limitations en macronutriments ont été étudiées sur la diatomée centrique Thalassiosira weissflogii. La première étape de ce travail a consisté en l'étude de l'effet de conditions nutritives limitantes sur deux échelles du frustule des diatomées : celle de la cellule, avec l’étude du degré de silicification des diatomées, et celle du frustule, avec l’étude de sa structure et sa composition fine, au moyen de la spectroscopie InfraRouge à Transformée de Fourier (IRTF). La seconde étape de ce travail a consisté en l’étude du devenir post-mortem de ces cellules à travers l’étude de la cinétique de dissolution de la bSiO2 constituant leur frustule. Les résultats obtenus par IRTF indiquent clairement qu’à la plasticité du contenu global en bSiO2 du frustule des diatomées, s’ajoute la plasticité du frustule à l’échelle moléculaire, en fonction des conditions de croissance. Le degré d’organisation et le degré de réactivité du réseau siliceux sont tous deux affectés par l’environnement nutritif des diatomées. La quantité relative de matière organique associée au frustule varie également avec la disponibilité des éléments nutritifs. A travers ces changements, l’environnement nutritionnel affecte la dissolution du frustule des diatomées qui, dans les six expériences de dissolution, se déroulent en deux étapes, illustrant la composition biphasique du frustule. Les résultats indiquent que les conditions de croissance vont affecter la proportion et les vitesses de dissolution de la bSiO2 de ces phases. Par la modification des propriétés intrinsèques des phases de bSiO2, le frustule des diatomées limitées en nutriments auront une propension à la dissolution moins importante que celle des diatomées non-limitées. De ce fait, l’environnement nutritif des diatomées affecte l’export de bSiO2. Pour P. delicatissima, seuls 9 % de la bSiO2 initiale des cellules non limitées sont préservés après 22 jours de dissolution, tandis qu’environ 25 % sont préservés en cas de carence stricte en Cu ou de limitation en Fe durant la croissance. Les frustules de T. weissflogii limitées en macronutriment sont également mieux préservés après un mois de dissolution, avec 41 % et 51 % de la bSiO2 initiale restante pour les cellules majoritairement limitées en Si ou en N, respectivement, comparés au 20 % de préservation pour les cellules non-limitées. Ces résultats suggèrent que la dissolution de la silice dans les modèles globaux de l’océan pourrait être mieux paramétrée en tenant compte (i) de la cinétique de dissolution des deux phases de silice biogénique et (ii) de la meilleure préservation de la bSiO2 des cellules limitées en nutriments. / Diatoms are microalgae that contribute up to 75% of oceanic primary production and are major players in the oceanic biogeochemical silicon (Si) cycle. Understanding the mechanisms affecting the biogenic silica (bSiO2), constituting the diatom frustule, is necessary to improve the understanding of oceanic Si cycling. In summer, most of the open ocean is limited by low nutrient availability. Thus, the main objective of this thesis is to study the effect of diatom nutritional environment on biogenic silica (bSiO2) dissolution and export. This study focused on iron (Fe), Si and nitrogen (N) limitations, i.e. nutrients whose low concentrations during summer limit diatom production in the majority of the world ocean. One originality of this thesis is to study the copper (Cu) limitation, whose impact on the elemental composition and dissolution of diatoms has rarely been studied. The effects of micronutrient limiting conditions were studied on the pennate diatom Pseudo-nitzschia delicatissima while macronutrient limiting conditions were studied on the centric diatom Thalassiosira weissflogii. The first stage of this work was to study the effect of nutrient limiting conditions at two different scales of diatoms frustule: the cell scale, with the study of the silicification degree of diatoms, and the frustule scale, with the study of its structure and composition using Fourier Transform InfraRed spectroscopy (FTIR). The second stage of this work consisted of the study of the diatom post-mortem fate through the study of the dissolution kinetics of bSiO2 from diatom frustule. The FTIR results clearly indicate that, in addition to the plasticity of global bSiO2 content, diatom frustule also has plasticity at the molecular scale, depending on growth conditions. The organization degree and the reactivity degree of the silica lattice are both affected by diatom nutritional environment. The relative amount of organic matter associated with frustule is also affected by nutrient availability. Through these changes, the nutritional environment affects the dissolution of diatom frustules, which showed a two-stage dissolution in all six dissolution experiments, illustrating the biphasic composition of the frustule. The results indicate that the growth conditions affect both the proportion and the dissolution rates of these bSiO2 phases. By changing the intrinsic properties of the bSiO2 phases, nutrient limited-frustules will be dissolving less than non-limited diatom frustule. Therefore, the diatom nutrient environment affects bSiO2 export. In P. delicatissima, only 9 % of the initial bSiO2 remained from replete cells at the end of the twenty-two days dissolution experiment, while about 25 % remained from Cu-starved and Fe-limited cells. Macronutrient-limited T. weissflogii were also more preserved after one month of dissolution with 41 % and 51 % of the initial bSiO2 remaining for cells predominantly Si- or N-limited, respectively, whereas 20% of the initial bSiO2 was preserved in replete cells. These results suggest that the biogenic silica dissolution in global ocean models could be better parameterized taking into account (i) the dissolution kinetics of the two bSiO2 phases and (ii) an enhanced bSiO2 preservation of nutrient-limited cells.
9

Lake condition changes of a boreal lake over the past ca. 6500 years based on varve geochemistry

Ligtenberg, Jora January 2017 (has links)
The purpose of this study was to assess changes in the in-lake conditions of lake Kassjön, northern Sweden, in response to environmental and climate changes over the past ca. 6500 years. Sediment concentrations of different elements and biogenic silica (bSi) were measured with wavelength dispersive X-ray fluorescence spectrometry (XRF) and Fourier transform infrared spectroscopy (FTIR), respectively. The lake-water total organic carbon (LWTOC) content was inferred based on near-infrared spectroscopy (NIRS). The marine sediment was distinguished from the lacustrine sediment by higher dry bulk density, lithogenic element concentrations and Br content, and lower bSi concentrations. After lake formation, the dry bulk density, lithogenic element concentrations and metal contents decreased, while organic matter (OM), bSi and LWTOC increased. The main reasons for these changes are soil development and vegetation establishment. Spruce immigration around 3000 BP induced considerable changes to the sediment concentrations indicative of increased erosion versus weathering, and LWTOC declined. These changes are mainly related the different characteristics of spruce compared to birch. Human influences in the catchment were also clearly visible, but the rest of the sediment sequence demonstrated that natural changes can be of a similar magnitude. Overall, relatively small-scale, catchment specific processes seem to be more important for changes in the lake conditions than general climate change.
10

7700 Years of Holocene Climatic Variability in Sermilik Valley, Southeast Greenland Inferred From Lake Sediments

Davin, Samuel H 01 January 2013 (has links) (PDF)
During the latter half of the 20th century until present day there has been an unprecedented rise in global annual mean temperatures accompanied by rising sea levels and a decrease in Northern Hemisphere snow cover, which if it continues will lead to widespread disruption of climate patterns, ecosystems, and present-day landscapes. It is therefore of critical importance to establish an expanded network of paleoclimate records across the globe in order to better assesses how the global climate system has changed in the past, that we may create a metric by which to address modern change. Herein is presented a7,700 years record of Holocene climatic and environmental variability in Sermilik Valley, located on Ammassalik Island, SE Greenland. This objective of this study is to determine the timing of major Holocene climate transitions as expressed in the physical, elemental, and geochemical parameters preserved in the 484 cm sediment record of Lower Sermilik Lake. Major transitions observed in this study include the deglaciation of Sermilik Valley, the onset and termination of the Holocene Climatic Optimum, the transition into neoglacial conditions, and the Little Ice Age.

Page generated in 0.1044 seconds