• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isotope-based reconstruction of the biogeochemical Si cycle : Implications for climate change and human perturbation

Sun, Xiaole January 2012 (has links)
The global silicon (Si) cycle is of fundamental importance for the global carbon cycle. Diatom growth in the oceans is a major sequestration pathway for carbon on a global scale (often referred to as the biological pump). Patterns of diatoms preserved in marine sediment records can reveal both natural and anthropogenic driven environmental change, which can be used to understand silicon dynamics and climate change. Si isotopes have been shown to have great potential in order to understand the Si cycle by revealing both past and present patterns of dissolved Si (DSi) utilization, primarily when diatoms form their siliceous frustules (noted as biogenic silica, BSi). However, studies using Si isotopes are still scarce and only a few studies exist where stable Si isotopes are used to investigate the biogeochemical Si cycle in aquatic systems. Therefore, this thesis focuses on developing analytical methods for studying BSi and DSi and also provides tools to understand the observed Si isotope distribution, which may help to understand impacts of climate change and human perturbations on marine ecosystems. The Baltic Sea, one of the biggest estuarine systems in the world, was chosen as the study site. BSi samples from a sediment core in Bothnian Bay, the most northern tip of the Baltic Sea, and diatom samples from the Oder River, draining into the southern Baltic Sea were measured and reported in Paper II and III, after establishing a method for Si isotope measurements (Paper I). Si isotope fractionation during diatom production and dissolution was also investigated in a laboratory-controlled experiment (Paper IV) to validate the observations from the field. The major result is that Si isotope signatures in BSi can be used as an historical archive for diatom growth and also related to changes in climate variables. There is isotopic evidence that the Si cycle has been significantly altered in the Baltic Sea catchment by human activities. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
2

Processus contrôlant la distribution des isotopes du silicium dissous (δ30Si) dans l'océan Atlantique et Indien / Processes controlling the distribution of dissolved silicon isotopes (δ30Si) in the Atlantic and the Southern Ocean

Coffineau, Nathalie 13 December 2013 (has links)
L'utilisation des isotopes du silicium (δ30Si) comme proxy paléocéanographique nécessite une bonne connaissance de la répartition et du devenir des isotopes du silicium à travers l'océan. Au cours des dernières années, des efforts considérables ont été faits pour cartographier la composition isotopique du silicium dissous (acide silicique, DSi) et de la silice biogénique (BSi) dans l'océan. Les diatomées utilisent le DSi pour construire leur frustule fait d’opale (BSi). Durant ce processus, les diatomées discriminent l'isotope lourd de silicium (30Si) en faveur de l'isotope léger (28Si). Ce fractionnement conduit à une BSi qui a un δ30Si inférieur de 1,1 ‰ à 1,5 ‰ par rapport au DSi source. Cela se traduit dans les eaux de surface par de faibles concentrations en DSi en raison de l'utilisation biologique et par des valeurs de δ30Si élevées en raison de la distillation de Rayleigh. Inversement, lorsque la BSi se dissout, il y a une discrimination contre l’isotope lourd et ainsi produit du silicium dissous avec un δ30Si inférieur de 0,55 ‰. Dans le même temps, la circulation océanique et le mélange vertical contribuent à modifier le δ30Si du pool de silicium dissous dans la couche de surface, ce qui complique l'utilisation du δ30Si des diatomées comme proxy pour l’utilisation du DSi durant la saison de croissance. Cette thèse vise à mieux comprendre les processus qui régissent le cycle du silicium et la signature en δ30Si des masses d'eau dans les différentes régions de l'océan. De nouvelles données de δ30Si de silicium dissous sont présentées et discutées. Ces données proviennent de 6 profiles CTD de la campagne ANTXXIII/9 (Atlantique et secteur indien de l'océan Austral), 7 profiles CTD de la campagne ANTXXIV/3 (secteur Atlantique de l'océan Austral), et 5 profiles CTD de la campagne MSM10/1 (région subtropical et tropical de l’océan Atlantique nord). Les échantillons ont été purifiés par chromatographie échangeuse d'ions après préconcentration par précipitation de Mg(OH)2, et le silicium est extrait en utilisant du triéthylamine molybdate. Les analyses isotopiques ont été réalisées sur Spectromètre de Masse Multi-Collection à source Plasma (MC-ICP-MS, Naptune) à moyenne résolution (Ifremer, Brest). / Use of silicon isotopes (δ30Si) as a paleoceanographic proxy requires sound knowledge of the distribution and behaviour of silicon isotopes throughout the ocean. Over the past few years considerable effort has been made to map the silicon isotope composition (δ30Si) of silicic acid (dissolved silicon, DSi) and biogenic silica (BSi) throughout the ocean. Diatoms uptake DSi to build up their opal frustules (BSi). During this process, diatoms discriminate against the heavier isotope of silicon (30Si) in favor of the light isotope (28Si). This fractionation leads to BSi that has a lower δ30Si than the DSi source by 1.1 ‰ to 1.5 ‰. In turn, this results in surface waters with low DSi concentrations due to biological removal, and high δ30Si values due to Rayleigh distillation. Conversely, when the BSi dissolves it is with discrimination against the heavier isotope producing dissolved silicon with a δ30Si lower by 0.55 ‰. At the same time, episodes of upwelling occurring throughout the growing season, ocean circulation and mixing, contribute to modify the δ30Si of the dissolved silicon pool in the surface mixed layer, which complicate the use of diatom δ30Si as a proxy for DSi removal during the growing season. This dissertation aims to better understand the processes driving the Si cycle and the δ30Si signature of water masses in different regions of the ocean. New data of δ30Si of dissolved Si are presented and discussed. These data come from 6 CTD profiles from ANTXXIII/9 campaign (Atlantic and Indian sector of the Southern Ocean), 7 CTD profiles from ANTXXIV/3 (Atlantic sector of the Southern Ocean), and 5 CTD profiles from the campaign MSM10/1 (north Subtropical and Tropical Atlantic Ocean). Samples were purified by ion-exchange chromatography following preconcentration via Mg(OH)2 precipitation and extraction of silicon using triethylamine molybdate. Isotopic analyses were carried on a Neptune MC-ICP-MS at medium resolution (Ifremer, Brest).

Page generated in 0.087 seconds