1 |
Padronização dos processos de recelularização de scaffolds biológicos provenientes de placentas caninas / Standardization of recellularization process of biological scaffolds from canine placentasMatias, Gustavo de Sá Schiavo 19 December 2018 (has links)
A busca por técnicas alternativas para suprir a escassez de tecidos e órgãos danificados levou ao surgimento da engenharia de tecidos. Scaffolds biológicos criados a partir da matriz extracelular (MEC) de órgãos e tecidos tem sido uma promissora ferramenta aplicada para suprir esta necessidade. A matriz extracelular placentária descelularizada surge como uma potencial ferramenta para a produção de scaffolds biológicos para recelularização e implantação em áreas lesionadas. Para ser classificado como um scaffolds biológico ideal, a matriz extracelular deve ser acelular e ter preservada suas proteínas e características físicas para viabilizar a adesão celular. Neste contexto, desenvolvemos o scaffolds biológico descelularizado a partir de placentas caninas com 35 e 40 dias de gestação. A eficiência da descelularização foi confirmada pela ausência de conteúdo celular e quantidade de DNA remanescente. A arquitetura vascular e as proteínas da matriz extracelular, tais como, colágenos tipo I, III e IV, laminina e fibronectina, foram preservadas. Para o processo de recelularização, utilizamos células-tronco progenitoras endoteliais derivadas do saco vitelino canino (SVC) e células tronco mesenquimais (CTMs) derivadas de medula óssea canina (CMOC) e de polpa de dente canina (CPDC). O processo de recelularização em placas não aderentes por 7 e 14 dias, na presença do scaffolds placentário secos em ponto crítico auxiliou na eficiência da recelularização, comprovada por imunofluorescência e microscopia eletrônica de varredura, evidenciando a adesão das células no scaffolds e comprovando ser um promissor biomaterial para utilização na medicina regenerativa tecidual. / The search for alternative techniques to address the scarcity of damaged tissues and organs has led to the emergence of tissue engineering. Biological scaffolds created from the extracellular matrix (ECM) of organs and tissues have been a promising applied tool to meet this need. The decellularized placental extracellular matrix appears as a potential tool for the production of biological scaffolds for recellularization and implantation in injured areas. To be classified as an ideal biological scaffold, the extracellular matrix must be acellular and have preserved its proteins and physical characteristics to enable cell adhesion. In this context, we developed the biological scaffold decellularized from canine placentas with 35 and 40 days of gestation. The efficiency of the decellularization was confirmed by the absence of cellular content and amount of DNA remaining. Vascular architecture and extracellular matrix proteins, such as collagens type I, III and IV, laminin and fibronectin, have been preserved. For the process of recellularization, we used stem cells derived from the canine yolk sac (CYSC) and mesenchymal stem cells (MSCs) derived from canine bone marrow (CBMC) and canine dental pulp (CDPC). The process of recellularization in non-adherent plaques for 7 and 14 days in the presence of placental scaffold dried at a critical point assisted in the efficiency of the recellularization, evidenced by immunocytochemistry and scanning electron microscopy, evidencing the adhesion of the cells in the scaffold and proving to be a promising biomaterial for use in tissue regenerative medicine.
|
2 |
A comparative study on the functionality of porcine dura as a tissue-engineered dura mater graft for clinical applicationsSharma, Ashma 13 May 2022 (has links) (PDF)
Damage to dura mater may occur during intracranial or spinal surgeries, which can result in cerebrospinal fluid leakage as well as other potentially fatal physiological changes. As a result, biological scaffolds derived from xenogeneic materials are typically used to repair and regenerate dura mater post intracranial or spinal surgeries. In this study we explore the mechanics, structure, and immunological capacity of xenogeneic dura mater to be considered as a replacement for human dura. A comparative analysis is done between native porcine dura and a commercially available bovine collagen-based dura graft. Native porcine dura mater was decellularized and subjected to mechanical and histological analysis. Our decellularized porcine dura was able to maintain the overall morphological/structural integrity and held an increased extensibility without sacrificing strength, which provides a solid foundation as a functional grafting material. The histological observations showed that the orientation of fibers was maintained after decellularization. We investigated the biocompatibility of native and decellularized porcine dura reseeded with fibroblast cells for in vitro study. Cell proliferation, cell viability, and mechanical properties of dural grafts were evaluated post reseeding on days 3, 7, and 14. Live-dead staining and resazurin salts quantified cell viability and cell proliferation, respectively. This in vitro study showed that the acellular porcine dural graft provided a favorable environment for rat fibroblast cell infiltration. The results of micro indentation testing show that the cell-seeded porcine dural graft provides a favorable environment for rat fibroblast cell infiltration. The mechanics and biocompatibility results provide promising insight for the potential use of porcine dura in future cranial dura mater graft applications. Lastly, a subcutaneous in vivo study of dura graft compared with the market available Lyoplant®. Grafts were evaluated for inflammation by evaluating macrophage and leukocyte invasion on 3, 7, and 14 days post implantation. Histological analysis of both implants revealed macrophage (and leukocyte infiltration, supporting reabsorption, and thus encouraging the regeneration at 14 days. Cell markers also revealed that inflammation and leukocytes decreased as the number of days increased. Future work will involve a long-term subcutaneous implantation up to 30 days and 60 days to determine the long-term immune response.
|
Page generated in 0.0465 seconds