• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 1
  • Tagged with
  • 34
  • 34
  • 14
  • 11
  • 11
  • 11
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A strategy for a systematic approach to biomarker discovery validation : a study on lung cancer microarray data set

Dol, Zulkifli January 2015 (has links)
Cancer is a serious threat to human health and is now one of major causes of death worldwide. However, the complexity of the cancer makes the development of new and specific diagnostic tools particularly challenging. A number of different strategies have been developed for biomarker discovery in cancer using microarray data. The problem that typically needs to be addressed is the scale of the data sets; we simply do not have (or are likely to obtain) sufficient data for classical machine learning approaches for biomarker discovery to be properly validated. Obtaining a biomarker that is specific to a particular cancer is also very challenging. The initial promise that was held out for gene microarray work for the development of cancer biomarkers has not yet yielded the hoped for breakthroughs. This work discusses the construction of a strategy for a systematic approach to biomarker discovery validation using lung cancer gene expression microarray data based around non-small cell cancer and in patients which either stayed disease free after surgery (a five year window) or in which the disease progressed and re-occurred. As a means of assisting the validation purposes we have therefore looked at new methodologies for using existing biological knowledge to support machine learning biomarker discovery techniques. We employ text mining strategy using previously published literature for correlating biological concepts to a given phenotype. Pathway driven approaches through the use of Web Services and workflows, enabled the large-scale dataset to be analysed systematically. The results showed that it was possible, at least using this specific data set, to clearly differentiate between progressive disease and disease free patients using a set of biomarkers implicated in neuroendocrine signaling. A validation of the biomarkers identified was attempted in three separately published data sets. This analysis showed that although there was support for some of our findings in one of these data sets, this appeared to be a function of the close similarity in experimental design followed rather than through specific of the analysis method developed.
12

Development of DNA Aptamers Targeting Breast Cancer Derived Extracellular Vesicles for Biomarker Discovery

Susevski, Vanessa 18 September 2020 (has links)
Detection of cancer at the early stages greatly increases the chance for successful treatment and favourable prognosis for patients. However, a liquid-based biopsy has yet to be developed for most cancers. Extracellular vesicles (EVs) are an attractive candidate for early cancer detection since their surface proteome mirrors the cell of origin. Thus, there is a need for the development of reliable probes that can detect cancer derived EVs. In this thesis, the VBS-1 aptamer was developed to selectively bind to triple-negative breast cancer cell line derived EVs. Initially, several EV isolation methods were compared and isolated EVs were validated and characterized. Aptamer clones were developed by Systematic Evolution of Ligands by Exponential Enrichment to EVs isolated by differential ultracentrifugation and their binding was validated by flow cytometry. The binding partner of the selected VBS-1 aptamer was identified by LC-MS/MS to be the transmembrane protein ATP1A1. The presence of an ATP1A1-positive EV population was validated by flow cytometry. The selected aptamer may find further application in biosensors for the detection of EVs as cancer biomarkers in biological fluids.
13

Integrative Analysis for Identifying Multi-Layer Modules in Precision Medicine

Yazdanparast, Aida 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Precision medicine aims to employ information from all modalities to develop a comprehensive view of disease progression and administer therapies tailored to the individual patient. A set of genomic features (gene CNVs, mutations, mRNA expressions, and protein abundances) is associated with each patient and it is hard to explain the phenotypic similarities such as gene essentiality or variability in drug response in a single genomic level. Thus, to extract biological principles it is critical to seek mutual information from multi-dimensional datasets. To address these concerns, we first conduct an integrated mRNA/protein analysis in both breast cancer cell lines and tumors, and most interestingly in the breast cancer subtypes. We identified cell lines that provide optimum heterogeneity models for studying the underlying biological processes of tumors. Our systematic observation across multi-omics data identifies distinct subgroups of cancer cells and patients. Based on this identified signal transduction between mRNA and RPPA, we developed a biclustering model to characterize key genetic alterations that are shared in both cancer cell lines and patients. We integrated two types of omics data including copy number variations, transcriptome, and proteome. Bi-EB adopts a data-driven statistics strategy by using Expected-Maximum (EM) algorithm to extract the foreground bicluster pattern from its background noise data in an iterative search. Using Bi-EB algorithm we selected translational gene sets that are characterized by highly correlated molecular profiles among RNA and proteins. To further investigate cell line and tissue in breast cancer we explore the relationship vii between genomic features and the phenotypic factors. Using in vitro/in vivo drug screening data, we adopt partial least square regression method and develop a multi-modular approach to predict anticancer therapy benefits for ER-negative breast cancer patients. The identified joint multi-dimensional modules here provide us new insights into the molecular mechanisms of drugs and cancer treatment. / 2021-12-28
14

Biomarker discovery for ALS by using affinity proteomica / Affinitetsproteomik för att upptäcka biomarkörer för ALS

Mohsenchian, Atefeh January 2012 (has links)
No description available.
15

Proteomic profiling of matched normal and tumour tongue biopsies from smokers and non-smokers. Oncoproteomic applications for oral tongue squamous cell carcinoma biomarker discovery

Saeed, Sidra January 2021 (has links)
Despite considerable development in the therapeutic repertoire for managing cancer-related malignancies, head and neck cancer mortality has not significantly improved. The burden of HNSCC fluctuates across countries and has been associated with exposure to tobacco-derived carcinogens, excessive alcohol consumption or combinations. Due to late detection, patients often present with oral pre-malignant lesions which have progressed to an advanced stage of HNSCC. In this study, the samples were from a male cohort as generally, men are at two to four-fold higher risk than women with over 90% of HNSCCs arising in the upper aerodigestive tract. Therefore, the purpose of this thesis was to identify HNSCC biomarkers in males associated within defined anatomical region (tongue) and causative agents, specific to smoking. An iTRAQ proteomic approach was used to profile protein changes in matched normal and tumour samples from male non-smoking (n=6) and smoking patients (n=6) with tongue carcinomas revealing identification of potential targets specific to cancer. Samples were subjected to liquid nitrogen cryo-pulverisation and protein determination. Protein extracts from the same category were pooled, trypsin digested and iTRAQ 4-plex labelled. Data was generated by 2D-LC/MS on an Orbitrap Fusion and significantly changed proteins (median ± SD) were subject to bioinformatics appraisal. A total of 3426 proteins were identified and quantified by proteomic analysis. Comparison of non-smoker tumour (NS:T) with smoker tumour (S:T) distinguished 64 proteins that were upregulated and 62 downregulated, S:T vs S:N categorised 349 proteins up- and 395 down-regulated respectively and NS:T vs NS:N identified 469 proteins up- and 431 down-regulated, respectively. Arginase-1 (ARG1), Keratin Type-2 Cytoskeletal 8 (KRT8), Lipocalin-1 (LCN1) and DNA replication licensing factor MCM2 (MCM2) were identified as biologically associated with smoking compared to non-smoking, providing viable targets for verification by immunochemical methods which further supported the proteomic data. Overall, the project demonstrated the importance of using matched biopsies with good clinicopathological data for experimental design and provided a set of unique targets for a more expanded verification study.
16

A Probabilistic Approach for Automated Discovery of Biomarkers using Expression Data from Microarray or RNA-Seq Datasets

Sundaramurthy, Gopinath 03 June 2016 (has links)
No description available.
17

Multiplexed Separations for New Advances in Biomarker Discovery and Tissue Metabolomic Studies

Saoi, Michelle 31 July 2019 (has links)
PhD Thesis / Metabolomics offers a systemic approach to discover clinical biomarkers for early detection of chronic diseases while also revealing underlying mechanisms relevant to human disorders of complex aetiology. Metabolomic studies in support of chronic disease prevention have focused primarily on surrogate biofluids (e.g., serum, plasma) for analysis due to their routine and less invasive sample collection in a clinical setting. However, biofluids are non-organ specific and thus are reflective of confounding biochemical processes within the body that are often difficult to interpret. As a result, it is necessary to assess metabolite changes localized within tissues since they are the direct site of pathogenic processes, in order to obtain more robust and specific biomarkers. This thesis aims to contribute to new advances in biomarker discovery and tissue metabolomic studies using multiplexed separations together with innovative data workflows based on multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). Chapter II introduces a high throughput yet targeted screening method for accurate quantification of serum γ‐glutamyl dipeptides from a cohort of overweight Japanese non-alcoholic steatohepatitis (NASH) patients that may allow for better risk assessment of long-term survivorship complementary to histopathology. Chapter III introduces a non-targeted metabolite profiling strategy for fasting plasma samples from prediabetic, older adults undergoing short-term step reduction (<1000 steps/day) in order to identify adaptive metabolic responses to abrupt changes in physical inactivity for early detection of sarcopenia in high-risk older persons. Chapter IV describes the first metabolomics study to characterize the human skeletal muscle metabolome from mass-restricted tissue biopsies together with matching plasma samples, which identified novel metabolic signatures associated with strenuous interval exercise, as well as treatment effects from high-dose bicarbonate pretreatment that delays the onset of muscle fatigue. Lastly, in Chapter V, metabolite coverage was expanded to include fatty acids for comprehensive characterization of murine placental tissue metabolome, which revealed sex-specific metabolic adaptations during gestation from maternal dams fed a standardized diet. In summary, this thesis contributes to new innovations in metabolomics for the discovery of novel biomarkers from blood and/or tissue specimens as required for early detection of chronic diseases relevant to population health, which were also used to validate the efficacy of therapeutic interventions based on physical activity to support healthy ageing. / Thesis / Doctor of Philosophy (PhD)
18

Module-based Analysis of Biological Data for Network Inference and Biomarker Discovery

Zhang, Yuji 25 August 2010 (has links)
Systems biology comprises the global, integrated analysis of large-scale data encoding different levels of biological information with the aim to obtain global insight into the cellular networks. Several studies have unveiled the modular and hierarchical organization inherent in these networks. In this dissertation, we propose and develop innovative systems approaches to integrate multi-source biological data in a modular manner for network inference and biomarker discovery in complex diseases such as breast cancer. The first part of the dissertation is focused on gene module identification in gene expression data. As the most popular way to identify gene modules, many cluster algorithms have been applied to the gene expression data analysis. For the purpose of evaluating clustering algorithms from a biological point of view, we propose a figure of merit based on Kullback-Leibler divergence between cluster membership and known gene ontology attributes. Several benchmark expression-based gene clustering algorithms are compared using the proposed method with different parameter settings. Applications to diverse public time course gene expression data demonstrated that fuzzy c-means clustering is superior to other clustering methods with regard to the enrichment of clusters for biological functions. These results contribute to the evaluation of clustering outcomes and the estimations of optimal clustering partitions. The second part of the dissertation presents a hybrid computational intelligence method to infer gene regulatory modules. We explore the combined advantages of the nonlinear and dynamic properties of neural networks, and the global search capabilities of the hybrid genetic algorithm and particle swarm optimization method to infer network interactions at modular level. The proposed computational framework is tested in two biological processes: yeast cell cycle, and human Hela cancer cell cycle. The identified gene regulatory modules were evaluated using several validation strategies: 1) gene set enrichment analysis to evaluate the gene modules derived from clustering results; (2) binding site enrichment analysis to determine enrichment of the gene modules for the cognate binding sites of their predicted transcription factors; (3) comparison with previously reported results in the literatures to confirm the inferred regulations. The proposed framework could be beneficial to biologists for predicting the components of gene regulatory modules in which any candidate gene is involved. Such predictions can then be used to design a more streamlined experimental approach for biological validation. Understanding the dynamics of these gene regulatory modules will shed light on the related regulatory processes. Driven by the fact that complex diseases such as cancer are “diseases of pathways”, we extended the module concept to biomarker discovery in cancer research. In the third part of the dissertation, we explore the combined advantages of molecular interaction network and gene expression profiles to identify biomarkers in cancer research. The reliability of conventional gene biomarkers has been challenged because of the biological heterogeneity and noise within and across patients. In this dissertation, we present a module-based biomarker discovery approach that integrates interaction network topology and high-throughput gene expression data to identify markers not as individual genes but as modules. To select reliable biomarker sets across different studies, a hybrid method combining group feature selection with ensemble feature selection is proposed. First, a group feature selection method is used to extract the modules (subnetworks) with discriminative power between disease groups. Then, an ensemble feature selection method is used to select the optimal biomarker sets, in which a double-validation strategy is applied. The ensemble method allows combining features selected from multiple classifications with various data subsampling to increase the reliability and classification accuracy of the final selected biomarker set. The results from four breast cancer studies demonstrated the superiority of the module biomarkers identified by the proposed approach: they can achieve higher accuracies, and are more reliable in datasets with same clinical design. Based on the experimental results above, we believe that the proposed systems approaches provide meaningful solutions to discover the cellular regulatory processes and improve the understanding about disease mechanisms. These computational approaches are primarily developed for analysis of high-throughput genomic data. Nevertheless, the proposed methods can also be extended to analyze high-throughput data in proteomics and metablomics areas. / Ph. D.
19

Topic Model-based Mass Spectrometric Data Analysis in Cancer Biomarker Discovery Studies

Wang, Minkun 14 June 2017 (has links)
Identification of disease-related alterations in molecular and cellular mechanisms may reveal useful biomarkers for human diseases including cancers. High-throughput omic technologies for identifying and quantifying multi-level biological molecules (e.g., proteins, glycans, and metabolites) have facilitated the advances in biological research in recent years. Liquid (or gas) chromatography coupled with mass spectrometry (LC/GC-MS) has become an essential tool in such large-scale omic studies. Appropriate LC/GC-MS data preprocessing pipelines are needed to detect true differences between biological groups. Challenges exist in several aspects of MS data analysis. Specifically for biomarker discovery, one fundamental challenge in quantitation of biomolecules is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based omic studies. Purification of mass spectometric data is highly desired prior to subsequent differential analysis. In this research dissertation, we majorly target at addressing the purification problem through probabilistic modeling. We propose an intensity-level purification model (IPM) to computationally purify LC/GC-MS based cancerous data in biomarker discovery studies. We further extend IPM to scan-level purification model (SPM) by considering information from extracted ion chromatogram (EIC, scan-level feature). Both IPM and SPM belong to the category of topic modeling approach, which aims to identify the underlying "topics" (sources) and their mixture proportions in composing the heterogeneous data. Additionally, denoise deconvolution model (DMM) is proposed to capture the noise signals in samples based on purified profiles. Variational expectation-maximization (VEM) and Markov chain Monte Carlo (MCMC) methods are used to draw inference on the latent variables and estimate the model parameters. Before we come to purification, other research topics in related to mass spectrometric data analysis for cancer biomarker discovery are also investigated in this dissertation. Chapter 3 discusses the developed methods in the differential analysis of LC/GC-MS based omic data, specifically for the preprocessing in data of LC-MS profiled glycans. Chapter 4 presents the assumptions and inference details of IPM, SPM, and DDM. A latent Dirichlet allocation (LDA) core is used to model the heterogeneous cancerous data as mixtures of topics consisting of sample-specific pure cancerous source and non-cancerous contaminants. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum and tissue proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis. Chapter 5 elaborates these applications in cancer biomarker discovery, where typical single omic and integrative analysis of multi-omic studies are included. / Ph. D.
20

Bayesian Alignment Model for Analysis of LC-MS-based Omic Data

Tsai, Tsung-Heng 22 May 2014 (has links)
Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used in various omic studies for biomarker discovery. Appropriate LC-MS data preprocessing steps are needed to detect true differences between biological groups. Retention time alignment is one of the most important yet challenging preprocessing steps, in order to ensure that ion intensity measurements among multiple LC-MS runs are comparable. In this dissertation, we propose a Bayesian alignment model (BAM) for analysis of LC-MS data. BAM uses Markov chain Monte Carlo (MCMC) methods to draw inference on the model parameters and provides estimates of the retention time variability along with uncertainty measures, enabling a natural framework to integrate information of various sources. From methodology development to practical application, we investigate the alignment problem through three research topics: 1) development of single-profile Bayesian alignment model, 2) development of multi-profile Bayesian alignment model, and 3) application to biomarker discovery research. Chapter 2 introduces the profile-based Bayesian alignment using a single chromatogram, e.g., base peak chromatogram from each LC-MS run. The single-profile alignment model improves on existing MCMC-based alignment methods through 1) the implementation of an efficient MCMC sampler using a block Metropolis-Hastings algorithm, and 2) an adaptive mechanism for knot specification using stochastic search variable selection (SSVS). Chapter 3 extends the model to integrate complementary information that better captures the variability in chromatographic separation. We use Gaussian process regression on the internal standards to derive a prior distribution for the mapping functions. In addition, a clustering approach is proposed to identify multiple representative chromatograms for each LC-MS run. With the Gaussian process prior, these chromatograms are simultaneously considered in the profile-based alignment, which greatly improves the model estimation and facilitates the subsequent peak matching process. Chapter 4 demonstrates the applicability of the proposed Bayesian alignment model to biomarker discovery research. We integrate the proposed Bayesian alignment model into a rigorous preprocessing pipeline for LC-MS data analysis. Through the developed analysis pipeline, candidate biomarkers for hepatocellular carcinoma (HCC) are identified and confirmed on a complementary platform. / Ph. D.

Page generated in 0.0633 seconds