• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles / Flugzeuggetragene spektrale Strahlungsmessungen zur Bestimmung des solaren Strahlungsantriebs von Sahara-Staub und Partikeln aus Biomasseverbrennungsprodukten

Bauer, Stefan 06 August 2014 (has links) (PDF)
This dissertation deals with spectral measurements of solar radiation in the visible and near infrared wavelength range. The data were collected during a field campaign on the Cape Verde Islands in January / February 2008 within the DFG research group SAMUM 2 (Saharan Mineral Dust Experiment). During this campaign airborne measurements of upward radiances and irradiances were performed over aerosol layers. Since the Cape Verde Islands are in the advection area of air masses from the Sahara region northeast of the islands and from regions with bush fires from the southeast, the sampled aerosol mainly consists of mineral dust, biomass burning smoke or a mixture of both. These radiation measurements and airborne lidar measurements of aerosol extinction coefficients were used to calculate the dust radiative forcing at the top of atmosphere with an one-dimensional radiative transfer model. This required the spectral surface albedo and aerosol optical properties, determined by model retrievals. The dependence of the calculated dust radiative forcing on the aerosol optical thickness was used to distinguish between aerosol distributions with mineral dust only or mixed with biomass burning smoke. This mainly model-based method was compared with another mainly measurement-based method, which requires the net radiation at the flight altitude and its dependence on the aerosol optical thickness to distinguish between the different aerosol distributions. The mainly model-based method shows no differences between the calculated radiative forcings of aerosols mainly consisting of mineral dust and those mixed with biomass burning smoke due to high uncertainties. In contrast to the mainly model-based method, the mainly measurement-based method shows clear differences between aerosols with and without biomass burning smoke. Thus the mainly measurement-based method is the preferred method, because it omits the retrieval of the aerosol optical properties, which leads to high uncertainties, in contrast to the mainly model-based method.
2

Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles

Bauer, Stefan 18 July 2014 (has links)
This dissertation deals with spectral measurements of solar radiation in the visible and near infrared wavelength range. The data were collected during a field campaign on the Cape Verde Islands in January / February 2008 within the DFG research group SAMUM 2 (Saharan Mineral Dust Experiment). During this campaign airborne measurements of upward radiances and irradiances were performed over aerosol layers. Since the Cape Verde Islands are in the advection area of air masses from the Sahara region northeast of the islands and from regions with bush fires from the southeast, the sampled aerosol mainly consists of mineral dust, biomass burning smoke or a mixture of both. These radiation measurements and airborne lidar measurements of aerosol extinction coefficients were used to calculate the dust radiative forcing at the top of atmosphere with an one-dimensional radiative transfer model. This required the spectral surface albedo and aerosol optical properties, determined by model retrievals. The dependence of the calculated dust radiative forcing on the aerosol optical thickness was used to distinguish between aerosol distributions with mineral dust only or mixed with biomass burning smoke. This mainly model-based method was compared with another mainly measurement-based method, which requires the net radiation at the flight altitude and its dependence on the aerosol optical thickness to distinguish between the different aerosol distributions. The mainly model-based method shows no differences between the calculated radiative forcings of aerosols mainly consisting of mineral dust and those mixed with biomass burning smoke due to high uncertainties. In contrast to the mainly model-based method, the mainly measurement-based method shows clear differences between aerosols with and without biomass burning smoke. Thus the mainly measurement-based method is the preferred method, because it omits the retrieval of the aerosol optical properties, which leads to high uncertainties, in contrast to the mainly model-based method.
3

Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

Peng, Zhe, Day, Douglas A., Ortega, Amber M., Palm, Brett B., Hu, Weiwei, Stark, Harald, Li, Rui, Tsigaridis, Kostas, Brune, William H., Jimenez, Jose L. 06 April 2016 (has links)
Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(<sup>1</sup>D), O(<sup>3</sup>P), and O<sub>3</sub>. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H<sub>2</sub>O) and external OH reactivity (OHR<sub>ext</sub>), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(<sup>1</sup>D), O(<sup>3</sup>P), and O<sub>3</sub> have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define “riskier OFR conditions” as those with either low H<sub>2</sub>O (< 0.1 %) or high OHR<sub>ext</sub> ( ≥  100 s<sup>−1</sup> in OFR185 and > 200 s<sup>−1</sup> in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O<sub>3</sub>, similarly to the troposphere. Working under low O<sub>2</sub> (volume mixing ratio of 0.002) with the OFR185 mode allows OH to completely dominate over O<sub>3</sub> reactions even for the biogenic species most reactive with O<sub>3</sub>. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in laboratory studies and by humidification. Photolysis of secondary organic aerosol (SOA) samples is estimated to be significant (> 20 %) under the upper limit assumption of unity quantum yield at medium (1 × 10<sup>13</sup> and 1.5 × 10<sup>15</sup> photons cm<sup>−2</sup> s<sup>−1</sup> at 185 and 254 nm, respectively) or higher UV flux settings. The need for quantum yield measurements of both VOC and SOA photolysis is highlighted in this study. The results of this study allow improved OFR operation and experimental design and also inform the design of future reactors.

Page generated in 0.0716 seconds