11 |
Complex land cover classifications and physical properties retrieval of tropical forests using multi-source remote sensingWijaya, Arief 30 April 2010 (has links)
The work presented in this thesis mainly focuses on two subjects related to the application of remote sensing data: (1) for land cover classification combining optical sensor, texture features generated from spectral information and synthetic aperture radar (SAR) features, and (2) to develop a non-destructive approach for above ground biomass (AGB) and forest attributes estimation employing multi-source remote sensing data (i.e. optical data, SAR backscatter) combined with in-situ data. Information provided by reliable land cover map is useful for management of forest resources to support sustainable forest management, whereas the generation of the non-destructive approach to model forest biophysical properties (e.g. AGB and stem volume) is required to assess the forest resources more efficiently and cost-effective, and coupled with remote sensing data the model can be applied over large forest areas. This work considers study sites over tropical rain forest landscape in Indonesia characterized by different successional stages and complex vegetation structure including tropical peatland forests. The thesis begins with a brief introduction and the state of the art explaining recent trends on monitoring and modeling of forest resources using remote sensing data and approach. The research works on the integration of spectral information and texture features for forest cover mapping is presented subsequently, followed by development of a non-destructive approach for AGB and forest parameters predictions and modeling. Ultimately, this work evaluates the potential of mosaic SAR data for AGB modeling and the fusion of optical and SAR data for peatlands discrimination. The results show that the inclusion of geostatistics texture features improved the classification accuracy of optical Landsat ETM data. Moreover, the fusion of SAR and optical data enhanced the peatlands discrimination over tropical peat swamp forest. For forest stand parameters modeling, neural networks method resulted in lower error estimate than standard multi-linear regression technique, and the combination of non-destructive measurement (i.e. stem number) and remote sensing data improved the model accuracy. The up scaling of stem volume and biomass estimates using Kriging method and bi-temporal ETM image also provide favorable estimate results upon comparison with the land cover map. / Die in dieser Dissertation präsentierten Ergebnisse konzentrieren sich hauptsächlich auf zwei Themen mit Bezug zur angewandten Fernerkundung: 1) Der Klassifizierung von Oberflächenbedeckung basierend auf der Verknüpfung von optischen Sensoren, Textureigenschaften erzeugt durch Spektraldaten und Synthetic-Aperture-Radar (SAR) features und 2) die Entwicklung eines nichtdestruktiven Verfahrens zur Bestimmung oberirdischer Biomasse (AGB) und weiterer Waldeigenschaften mittels multi-source Fernerkundungsdaten (optische Daten, SAR Rückstreuung) sowie in-situ Daten. Eine zuverlässige Karte der Landbedeckung dient der Unterstützung von nachhaltigem Waldmanagement, während eine nichtdestruktive Herangehensweise zur Modellierung von biophysikalischen Waldeigenschaften (z.B. AGB und Stammvolumen) für eine effiziente und kostengünstige Beurteilung der Waldressourcen notwendig ist. Durch die Kopplung mit Fernerkundungsdaten kann das Modell auf große Waldflächen übertragen werden. Die vorliegende Arbeit berücksichtigt Untersuchungsgebiete im tropischen Regenwald Indonesiens, welche durch verschiedene Regenerations- und Sukzessionsstadien sowie komplexe Vegetationsstrukturen, inklusive tropischer Torfwälder, gekennzeichnet sind. Am Anfang der Arbeit werden in einer kurzen Einleitung der Stand der Forschung und die neuesten Forschungstrends in der Überwachung und Modellierung von Waldressourcen mithilfe von Fernerkundungsdaten dargestellt. Anschließend werden die Forschungsergebnisse der Kombination von Spektraleigenschaften und Textureigenschaften zur Waldbedeckungskartierung erläutert. Desweiteren folgen Ergebnisse zur Entwicklung eines nichtdestruktiven Ansatzes zur Vorhersage und Modellierung von AGB und Waldeigenschaften, zur Auswertung von Mosaik- SAR Daten für die Modellierung von AGB, sowie zur Fusion optischer mit SAR Daten für die Identifizierung von Torfwäldern. Die Ergebnisse zeigen, dass die Einbeziehung von geostatistischen Textureigenschaften die Genauigkeit der Klassifikation von optischen Landsat ETM Daten gesteigert hat. Desweiteren führte die Fusion von SAR und optischen Daten zu einer Verbesserung der Unterscheidung zwischen Torfwäldern und tropischen Sumpfwäldern. Bei der Modellierung der Waldparameter führte die Neural-Network-Methode zu niedrigeren Fehlerschätzungen als die multiple Regressions. Die Kombination von nichtdestruktiven Messungen (z.B. Stammzahl) und Fernerkundungsdaten führte zu einer Steigerung der Modellgenauigkeit. Die Hochskalierung des Stammvolumens und Schätzungen der Biomasse mithilfe von Kriging und bi-temporalen ETM Daten lieferten positive Schätzergebnisse im Vergleich zur Landbedeckungskarte.
|
Page generated in 0.0596 seconds