• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • Tagged with
  • 201
  • 201
  • 67
  • 54
  • 49
  • 30
  • 30
  • 29
  • 25
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Use of Body Composition Imaging to Calculate 3-D Inertial Parameters for Inverse Dynamic Analysis of Youth Pitching Arm Kinetics

Jennings, Dalton James 01 March 2020 (has links) (PDF)
The objectives of this study were to 1) calculate participant-specific segment inertial parameters using dual energy X-ray absorptiometry (DXA) data (referred to as full DXA-driven parameters) and compare the pitching arm kinetic predictions using full DXA-driven inverse dynamics vs scaled, DXA mass-driven (using DXA masses but scaled centers of mass and radii of gyration), and DXA scaled inverse dynamics(ID) (using the full DXA-driven inertial parameters averaged across all participants), 2) examine associations between full DXA-driven kinetics and body mass index (BMI) and 3) examine associations between full DXA-driven kinetics and segment mass index (SMI). Eighteen 10- to 11- year-olds pitched 10 fastballs. DXA scans were conducted and examined to obtain 3D inertial parameters of the upper arm, forearm, and hand. Full DXA-driven and scaled inertial parameters were compared using paired t-tests. Pitching arm kinetic predictions calculated with the four methods (i.e. scaled ID, DXA mass-driven ID, full DXA-driven ID, and DXA scaled ID) were compared using a repeated measures ANOVA with Tukey post-hoc tests. The major results were that 1) full DXA-driven participant specific inertial parameters differed from scaled inertial parameters 2) kinetic predictions significantly varied by method and 3) full DXA-driven ID predictions for shoulder compression force and shoulder internal rotation torque were significantly associated with BMI and/or SMI.
102

The Application of Post-hoc Correction Methods for Soft Tissue Artifact and Marker Misplacement in Youth Gait Knee Kinematics

Lawson, Kaila L 01 June 2021 (has links) (PDF)
Biomechanics research investigating the knee kinematics of youth participants is very limited. The most accurate method of measuring knee kinematics utilizes invasive procedures such as bone pins. However, various experimental techniques have improved the accuracy of gait kinematic analyses using minimally invasive methods. In this study, gait trials were conducted with two participants between the ages of 11 and 13 to obtain the knee flexion-extension (FE), adduction-abduction (AA) and internal-external (IE) rotation angles of the right knee. The objectives of this study were to (1) conduct pilot experiments with youth participants to test whether any adjustments were necessary in the experimental methods used for adult gait experiments, (2) apply a Triangular Cosserat Point Element (TCPE) analysis for Soft-Tissue Artifact (STA) correction of knee kinematics with youth participants, and (3) develop a code to conduct a Principal Component Analysis (PCA) to find the PCA-defined flexion axis and calculate knee angles with both STA and PCA-correction for youth participants. The kinematic results were analyzed for six gait trials on a participant-specific basis. The TCPE knee angle results were compared between uncorrected angles and another method of STA correction, Procrustes Solution, with a repeated measures ANOVA of the root mean square errors between each group and a post-hoc Tukey test. The PCA-corrected results were analyzed with a repeated measures ANOVA of the FE-AA correlations from a linear regression analysis between TCPE, PS, PCA-TCPE and PCA-PS angles. The results indicated that (1) youth experiments can be conducted with minor changes to experimental methods used for adult gait experiments, (2) TCPE and PS analyses did not yield statistically different knee kinematic results, and (3) PCA-correction did not reduce FE-AA correlations as predicted.
103

Triangular Cosserat Point Element Method for Reducing Soft Tissue Artifact: Validation and Application to Gait

Deschamps, Jake Edward, Klisch, Stephen 01 December 2021 (has links) (PDF)
Human motion capture technology is a powerful tool for advancing the understanding of human motion biomechanics (Andriacchi and Alexander, 2000). This is most readily accomplished by applying retroreflective markers to a participant’s skin and tracking the position of the markers during motion. Skin and adipose tissue move independently of the underlying bone during motion creating error known as soft tissue artifact (STA), the primary source of error in human motion capture (Leardini et al., 2005). (Solav et al., 2014) proposed and (Solav et al., 2015) expanded the triangular Cosserat point element (TCPE) method to reduce the effect of STA on derived kinematics through application of a marker cluster analyzed as a set of triangular Cosserat point elements. This method also provides metrics for three different modes of STA. Here the updated TCPE method (Solav et al., 2015) was compared to the established point cluster (PC) method of (Andriacchi et al., 1998) and the marker position error minimizing Procrustes solution (PS) method of (Söderkvist and Wedin, 1993) in two implant-based simulations, providing quantitative measures of error, and standard gait analysis, providing qualitative comparisons of each method’s determined kinematics. Both of these experiments allowed the TCPE method to generate observed STA parameters, informing the efficacy of the simulation. The TCPE method’s performance was similar to the PS method’s in the implant simulations and in standard gait. The PC method’s results seemed to be affected by numerical instability: simulation trial errors were larger and standard gait results were only similar to the other methods’ in general terms. While the PS and TCPE results were comparable, the TCPE method’s physiological basis provided the added benefit of non-rigid behavior quantization through its STA parameters. In this study, these parameters were on the same order of v magnitude between the standard gait experiments and the simulations, suggesting that implant simulations could be valuable substitutes when invasive methods are not available.
104

Viscoelastic Anisotropic Finite Element Mixture Model of Articular Cartilage Using Viscoelastic Collagen Fibers and Validation with Stress Relaxation Data

Griebel, Matthew Alexander 01 June 2012 (has links) (PDF)
Experimental results show that collagen fibers exhibit stress relaxation under tension and a highly anisotropic distribution. To further develop the earlier model of Stender [1], the collagen constituent was updated to reflect its intrinsic viscoelasticity and anisotropic distribution, and integrated with an existing mixture model with glycosaminoglycans and ground substance matrix. A two-term Prony series expansion of the quasi-linear viscoelastic model was chosen to model the viscoelastic properties of the collagen fibers. Material parameters were determined by using the simplex method to minimize the sum of squared errors between model results and experimental stress relaxation data of tissue in tension. Collagen elastic fiber modulus was calculated by fitting to the equilibrium data and viscoelastic parameters were determined by fitting to the relaxation curve. Results of newborn (~1-3 week old) untreated bovine articular cartilage explants from the patellar femoral groove as well as explants cultured in transforming growth factor-β1 (TGF-β1), from both the superficial (~0-0.5 mm from the articular surface) and middle (~0.5-1.0 mm from the articular surface) layers were compared to examine the effects of TGF- β1. TGF-β1 has been shown to maintain or even enhance mechanical properties of articular cartilage in compression and tension [2, 3] and this study continues with the hope that it may be used to improve tissue engineering of mature cartilage to better survive implantation in vivo for the successful repair of articular cartilage defects. Results show that TGF-β1 has a maturational effect on collagen, causing the tissue to become stiffer through an increase in elastic collagen fiber modulus and less viscous through shorter relaxation time and less stress relaxation (tissue retained a higher percentage of residual stress). The results of this study further advance the understanding of the effects of location and treatment with TGF-β1.
105

A Finite Element Analysis of Tibial Stem Geometry for Total Knee Replacements

Bautista, Aaron Isidro 01 June 2015 (has links) (PDF)
The purpose of this study was to investigate the influence of tibial stem geometry on stress shielding of the tibia for patients with a total knee replacement. Finite element analysis was used to study different tibial stem geometry types, as well as a vast array of different geometric sizes. Both a peg and stem type geometry were analyzed and compared in order to determine what type geometry causes the least amount of stress shielding. A static loading condition with a dynamic loading factor of three was used for the system and the stress responses were analyzed at regions of interest at various depths. Regions of interest include the posterior and medial regions, at depths ranging from the resurfaced tibial surface to 100 mm below the surface. It was found that the smallest stem/peg sizes produced the least amount of stress shielding, indicating that the less amount of foreign material within the tibia, the more natural the bending and stress response of the tibia. It was also concluded that for the loading conditions used in this study, peg type geometry yields a decreased amount of stress shielding when compared to stem type geometry. This is due to the fact that the peg type geometry allowed for more natural bending and a distributed loading transfer between two pegs rather than one long central stem. Further studies should be completed on other geometry types in order to understand how to best replicate the natural bending of the tibia.
106

Development and Validation of a Human Knee Joint Finite Element Model for Tissue Stress and Strain Predictions During Exercise

Wangerin, Spencer D 01 December 2013 (has links) (PDF)
Osteoarthritis (OA) is a degenerative condition of cartilage and is the leading cost of disability in the United States. Motion analysis experiments in combination with knee-joint finite element (FE) analysis may be used to identify exercises that maintain knee-joint osteochondral (OC) loading at safe levels for patients at high-risk for knee OA, individuals with modest OC defects, or patients rehabilitating after surgical interventions. Therefore, a detailed total knee-joint FE model was developed by modifying open-source knee-joint geometries in order to predict OC tissue stress and strain during the stance phase of gait. The model was partially validated for predicting the timing and locations of maximum contact parameters (contact pressure, contact area, and principal Green-Lagrangian strain), but over-estimated contact parameters compared with both published in vivo studies and other FE analyses of the stance phase of gait. This suggests that the model geometry and kinematic boundary conditions utilized in this FE model are appropriate, but limitations in the material properties used, as well as potentially the loading boundary conditions represent primary areas for improvement.
107

The Effects of Obesity on Resultant Knee Joint Loads for Gait and Cycling

Gutierrez-Franco, Juan 01 June 2016 (has links) (PDF)
Osteoarthritis (OA) is a degenerative disease of cartilage and bone tissue and the most common form of arthritis, accounting for US$ 10.5 billion in hospital charges in 2006. Obesity (OB) has been linked to increased risk of developing knee OA due to increased knee joint loads and varus-valgus misalignment. Walking is recommended as a weight-loss activity but it may increase risk of knee OA as OB gait increases knee loads. Cycling has been proposed as an alternative weight-loss measure, however, lack of studies comparing normal weight (NW) and OB subjects in cycling and gait hinder identification of exercises that may best prevent knee OA incidence. The objective of this work is to determine if cycling is a better weight-loss exercise than gait in OB subjects as it relates to knee OA risk reduction due to decreased knee loads. A stationary bicycle was modified to measure forces and moments at the pedals in three dimensions. A pilot experiment was performed to calculate resultant knee loads during gait and cycling for NW (n = 4) and OB (n = 4) subjects. Statistical analyses were performed to compare knee loads and knee angles, and to determine statistical significance of results (p < 0.05). Cycling knee loads were lower than gait knee loads for all subjects (p < 0.033). OB axial knee loads were higher than NW axial knee loads in gait (p = 0.004) due to the weight-bearing nature of gait. No differences were observed in cycling knee loads between NW and OB subjects, suggesting cycling returns OB knee loads and biomechanics to normal levels. The lack of significant results in cycling could be due to the small sample size used or because rider weight is supported by the seat. Limitations to this study include small sample size, soft tissue artifact, and experimental errors in marker placement. Future studies should correct these limitations and find knee joint contact force rather than knee resultant loads using v EMG-driven experiments. In conclusion, cycling loads were lower than gait loads for NW and OB subjects suggesting cycling is a better weight-loss exercise than gait in the context of reducing knee OA risk.
108

Medial and Lateral Tibiofemoral Contact Forces for Individuals with High Body Mass Index in Gait and Cycling Training

Fernandez, Reymil 01 December 2021 (has links) (PDF)
The prevalence of knee osteoarthritis, a degenerative joint disease characterized by the degradation of articular cartilage, is correlated with the rise in obesity. The rising rates of obesity in children and adults highlight the need for identifying a sustainable physical activity that promotes fitness while mitigating initiation and progression of osteoarthritis. The objective of this study was to determine an effective rehabilitation and lifelong fitness sustainment exercise regimen that minimize risk of osteoarthritis in individuals with high body mass index (BMI). The aim was to examine knee medial and lateral contact forces in gait and cycling training. Gait at self-selected speeds and cycling at moderate resistance were studied using motion analysis in normal BMI and high BMI participants. Individuals with high BMI exhibited abnormal kinematics and increased kinetics in gait but neutral knee abduction-adduction angles, lower knee contact forces, and balanced mediolateral force distribution in cycling. The combination of maladaptive kinetics (excessive cartilage loading) and altered kinematics (primarily knee adduction angles) observed in gait for the high BMI cohort demonstrate the profound adverse effect of weight bearing and impact exercises on knee biomechanics. Exercise rehabilitation modalities should aim to minimize cartilage loading, correct altered knee angles, and prioritize balanced mediolateral force distributions in individuals with high BMI. Cycling, a non-weight bearing and low impact exercise, addresses all these factors because it constrains kinematic patterns with the pedals and carries significant body weight on the saddle.
109

Microenvironment Regulates Fusion of Breast Cancer Cells

Zhu, Peiran 12 July 2018 (has links) (PDF)
Fusion of cancer cells has been observed in tumors for more than a century and is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have developed a patterned gel system that can isolate cell fusion events and we demonstrate that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning the adhesive area of the micropatterned substrates, reducing cytoskeletal tensions pharmacologically, altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion and stability of these multinucleated giant cells. These observations highlight that the biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial curvature, can directly modulate their fusogenicity, an unexplored mechanism through which biophysical cues regulate tumor progression.
110

Analysis of Gait Parameters and Knee Angles in Ultimate Frisbee Players: Implications for Balance and Injury

Nikcevich, Ethan 01 October 2023 (has links) (PDF)
Biomechanics research investigating gait and balance of ultimate frisbee players is an unexplored topic. Ultimate requires a wide range of motions that could improve balance and is also a sport prone to frequent injury. This study explores the impact of playing ultimate on gait parameters associated with balance and knee angles associated with joint injury. Gait trials were conducted on 8 ultimate players and 8 control participants between the ages of 18 and 23 to obtain total double support time, stance phase time, single support time, load response time, abduction-adduction (AA) angles, internal-external (IE) rotation angles, and flexion angles of the dominant leg’s knee. Knee angles were obtained through the application of a Triangular Cosserat Point Element (TCPE) analysis for Soft-Tissue Artifact (STA) correction of knee kinematics. The gait parameters and knee angles were compared between ultimate players and control group participants using two-sample t tests. The results indicated that (1) playing ultimate may be used to improve balance, and (2) playing ultimate may reduce the range of IE rotation angles.

Page generated in 0.0948 seconds