1 |
Examining the impact of Normalization and Footwear on Gait Biometrics Recognition using the Ground Reaction ForceMason, James Eric 05 November 2014 (has links)
Behavioural biometrics are unique non-physical human characteristics that can be used to distinguish one person from another. One such characteristic, which belongs to the Gait Biometric, is the footstep Ground Reaction Force (GRF), the temporal signature of the force exerted by the ground back on the foot through the course of a footstep. This is a biometric for which the computational power required for practical applications in a security setting has only recently become available. In spite of this, there are still barriers to deployment in a practical setting, including large research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition. In this thesis we devised an experiment to address these research gaps, while also expanding upon the biometric system research presented in previous GRF recognition studies.
To assess the effect of footwear on recognition performance we proposed the analysis of a dataset containing samples for two different types of running shoes. While, with regards to stepping speed, we set out to demonstrate that normalizing for step duration will mitigate speed variation biases and improve GRF recognition performance; this included the development of two novel machine learning-based temporal normalization techniques: Localized Least Squares Regression (LLSR) and Localized Least Squares Regression with Dynamic Time Warping (LLSRDTW). Moreover, building upon previous research, biometric system analysis was done over four feature extractors, seven normalizers, and five different classifiers, allowing us to indirectly compare the GRF recognition results for biometric system configurations that had never before been directly compared.
The results achieved for the aforementioned experiment were generally in line with our initial assumptions. Comparing biometrics systems trained and tested with the same footwear against those trained and tested with different footwear, we found an average decrease in recognition performance of about 50%. While, performing LLSRDTW step duration normalization on the data led to a 14-15% improvement in recognition performance over its non-normalized equivalent in our two most stable feature spaces. Examining our biometric system configurations we found that a Wavelet Packet Decomposition-based feature extractor produced our best feature space results with an EER average of about 2.6%, while the Linear Discriminant Analysis (LDA) classifier performed best of the classifiers, about 19% better than any of the others. Finally, while not the intended purpose of our research, the work in this thesis was presented such that it may form a foundation upon which future classification problems could be approached in a wide range of alternative domains. / Graduate / 0800 / 0544 / jericmason@gmail.com
|
2 |
Facial and keystroke biometric recognition for computer based assessmentsAdetunji, Temitope Oluwafunmilayo 12 1900 (has links)
M. Tech. (Department of Information Technology, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Computer based assessments have become one of the largest growing sectors in both nonacademic
and academic establishments. Successful computer based assessments require
security against impersonation and fraud and many researchers have proposed the use of
Biometric technologies to overcome this issue. Biometric technologies are defined as a
computerised method of authenticating an individual (character) based on behavioural and
physiological characteristic features. Basic biometric based computer based assessment
systems are prone to security threats in the form of fraud and impersonations. In a bid to
combat these security problems, keystroke dynamic technique and facial biometric
recognition was introduced into the computer based assessment biometric system so as to
enhance the authentication ability of the computer based assessment system. The keystroke
dynamic technique was measured using latency and pressure while the facial biometrics was
measured using principal component analysis (PCA). Experimental performance was carried
out quantitatively using MATLAB for simulation and Excel application package for data
analysis. System performance was measured using the following evaluation schemes: False
Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER) and Accuracy
(AC), for a comparison between the biometric computer based assessment system with and
without the keystroke and face recognition alongside other biometric computer based
assessment techniques proposed in the literature. Successful implementation of the proposed
technique would improve computer based assessment’s reliability, efficiency and
effectiveness and if deployed into the society would improve authentication and security
whilst reducing fraud and impersonation in our society.
|
Page generated in 0.1383 seconds