• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of sustainable microbial fermentation strategies for the production of medium-chain length polyhydroxyalkanoates (mcl-PHAs) from biodiesel derived glycerol

Sharma, Umesh January 1900 (has links)
Bio-plastics have emerged as a promising alternative to conventional petrochemical derived plastics particularly over the past few decades. Numerous production methods for bio-plastics have been researched; however, work remains towards developing a commercially viable and economical process. The purpose of this research was to develop a sustainable fermentation strategy for production and scale-up of medium-chain length polyhydroxyalkanoates (mcl-PHAs), or bio-plastics, using a novel strain of the gram negative bacterium Pseudomonas putida, LS46, with biodiesel derived waste glycerol (WG) as feedstock. Experiments were conducted to gain a basic understanding of the general growth patterns exhibited by LS46. Thereafter, flask-batch experiments were conducted to study effects of variation in media conditions upon cell biomass production and mcl-PHA accumulation. Subsequently, optimal medium conditions observed within flasks were scaled-up and employed in the operation of a pilot-scale fermenter to increase production capacity for mcl-PHAs. It was concluded that mcl-PHA production at commercial levels could be viable with advanced process optimization. / October 2015
2

INJECTION MOULDED BIOPLASTICS FROM PLASTICIZED SOY MEAL AND BIODEGRADABLE POLYMER BLENDS

Zhou, Xiaobo 27 August 2012 (has links)
Soy meal, a coproduct of the soy oil-based biodiesel industry, has up to 50 wt% protein content. The main aim of this work was to develop value-added application for soy meal by blending with biopolymers. The chosen biopolymers were poly(butylenes adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA). This study is divided into two parts: the first part explained the plasticization of soy meal and modification of soy meal by denaturation. Characterization by Fourier transform infrared (FTIR) spectroscopy confirmed that the soy meal was plasticized and denatured. This part also discussed the fabrication, testing and characterization of blends of PBAT/soy meal (SM), PBAT/plasticized soy meal (PSM) and PBAT/modified plasticized soy meal (mPSM). The elongation at break of the bioblend was found to increase after plasticization of soy meal, and improved furthermore after denaturation while the tensile strength remained the same. Scanning electron microscope (SEM) images showed that the blends PBAT/mPSM had smoother surfaces and better internal structures than the other two. The second part of the study investigated the properties of mPSM blended with PBAT and PLA at varying ratios. The results revealed that with an increase in PLA content, the tensile strength improved, but the elongation of the blend reduced. No phase separations between PBAT and PLA were observed in the SEM pictures of the ternary blends, indicating limited miscibility between PBAT and PLA. / Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA) (Project Title: “New Value-Added Biomaterials from Waste Streams of Biodiesel Industries and Polylactides (PLA)”; Project NO.: SR9223 TF#049549), Hannam Soybean Utilization Fund (HSUF)
3

A Review of Wheat Gluten-Based Bioplastics Processing and Their Applications

Abdullah-Al-Rahim, Md January 2021 (has links)
Bioplastics produced from agricultural resources are gaining attraction in recent years because of their sustainability and potential biodegradability. Wheat gluten (a wheat protein) is among the potential feedstocks, which stands out because of its availability, low price, good biodegradability, and good viscoelastic properties. This paper provides state-of-art information on the processing of wheat-based bioplastics with their potential applications. It gives an overview of the structure of wheat gluten, its manufacturing processes (casting, thermoforming, extrusion, compression molding, injection molding), thermal-mechanical properties (tensile strength, elongation at break, young?s modulus, water vapor pressure, gas permeability, etc.) of processed plastic films and rigid products, methods to improve the properties, potential applications (packaging, biomedical, adhesives, cosmetics), and limitations and prospects of wheat-based bioplastics.
4

Development of renewable and hydrolytically degradable polymers from biomass-based monomers

Rowe, Mathew Dennis 01 May 2010 (has links)
Renewable polymers (bioplastics) offer an alternative to petroleum-based polymers and reduced environmental impact through decreased petroleum dependence and a sustainable product lifecycle via renewable, biomass-derived monomers and completely degradable polymers. Applying green chemistry principles, melt polycondensations of 1,3-propanediol with malonic acid and 1,3-propanediol with itaconic acid were performed to produce poly(trimethylene malonte) (PTM) and poly(trimethylene itaconate) (PTI), respectively. Aluminum chloride was used as the catalyst and reaction temperatures from 125-175 °C and reaction times from 2-32 h were attempted in order to produce high yields and molecular weights (Mw). Gravimetric yields ranged from 20-95 wt.% for PTM and 20-85 wt.% for PTI. Both PTM and PTI contained ester and ether backbone bonds, as determined by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Gel permeation chromatography showed both PTM and PTI to have a bi-modal Mw distributions centered at 1.4±0.1 kDa and 35±3 kDa for PTM and 1.0±0.1 kDa and 38±2 kDa for PTI. For PTM, a Tg of -64 °C and a Tm of 29 °C was identified using differential scanning calorimetry (DSC). A crystallization temperature for PTI was found at ~160 °C using DSC. A hydrolytic degradation study was performed at 25 °C on PTM and PTI in pH 5.4, 7, 9, and 11 aqueous solutions for up to 4 weeks. The introduction of K+ ions (in the KOH aq. solutions) interfered with the AAC2 and AAL1 ester hydrolysis mechanisms through acid-base interactions. PTM was found to be susceptible to hydrolytic degradation and lost ~37 wt.% through ester hydrolysis and showed a molecular weight reduction of ~0.8 kDa over 10,000 min for a pH range of 7 to 11. PTI was also found to be susceptible to hydrolytic degradation with ~22 wt.% decrease through ester hydrolysis and molecular weight reduction of ~0.25 kDa over 10,000 min for a pH range of 7 to 11. PTM is a low molecular weight, saturated, linear copolymer and PTI is a low molecular weight, unsaturated, branched copolymer. Both PTM and PTI are renewable copolymers produced using green chemistry and mild reactions conditions and were found to be susceptible to hydrolytic degradation.
5

Stanovení mikroplastů PLA v půdě pyrolýzními metodami / Determination of PLA microplastics in soil by using pyrolysis methods

Románeková, Ivana January 2020 (has links)
Nowadays, plastic waste poses one of the greatest risks to the environment. Plastics affect the environment at all stages of their life cycle. Bioplastics have become widely used as a substitute for conventional plastics, without detailed examination of their behavior in real environmental conditions. As a result, it is assumed that they can accumulate in the environment and the question arose as to how to identify them. The main goal of this thesis is to develop a method based on sample pyrolysis that is suitable for the identification and determination of the amount of PLA microplastics in soil and other solid matrices. Three types of soils and sludge were used for analysis. These matrices were spiked to obtain concentration ranges 0,2% - 5,0%. The pyrolysis resulted in evolution of gases with the signals m/z 29, 43 and 44, witch originated from PLA and are suitable for qualitative and quantitative analysis. Analysis of PLA in sludge was more complicated due to similarity of gases evolved from pure matrices. We tested three approaches based on analysis of signal´s peak areas, intensities and temperatures of gas evolution. While the first approach failed, the last two approaches appeared to be promising for qualitative and quantitative analysis of PLA in the sludge. Several methods suitable for qualitative and quantitative analysis of even very small amounts of PLA in soils and sludge have also been designed/developed. These methods were based on analysis of the composition and dynamics of the released gases and the characterisctic degradation temperatures.
6

The Bioconversion of Plastic Materials

Stubblefield, Bryan 09 May 2016 (has links)
Plastics are highly useful economically because of their resistance to diverse types of environmental and chemical agents and their ability to be molded into many types of products. Globally, plastic production is greater than 20 million metric tons per year. However, their widespread use and often their disposable nature results in significant plastic accumulation in the environment. Plastics are made of hydrocarbons, materials that are biodegradable depending on their molecular structure and size. It is hypothesized that pre-treatment of plastic materials could enhance their bioavailability, facilitating their microbial biodegradation. In this dissertation, a process was developed to treat nylon 6,6 polymers by acid hydrolysis to produce a microbial growth medium. The chemical composition of the medium was determined by low pressure liquid chromatography-spectrophotometry and electrospray ionization mass spectrometry and found that the medium was a mixture of molecules with molecular weight > 800 m/z and with similar chemical characteristics to polyamines. There was steady growth of Pseudomonas putida KT2440 in the medium with concomitant substrate biodegradation. Notably, the yeast Yarowia lipolytica grew well in the medium when supplemented with yeast extract. A similar medium derived from nylon 6,6 containing nylon-derived particles supported the growth of Beijerinckia sp. and Streptomyces sp. BAS1. Confocal laser scanning microscopy and flame ionization gas chromatography were used to identify and quantify the production of polyhydroxybutyrate, a type of “bioplastic”. The aforementioned microorganisms were cultivated in a bench-scale bioreactor that was developed as part of this dissertation. The bioreactor had a novel impeller design resulting in enhanced mixing and rotation and also a modular format allowing for diverse configurations. The bioreactor was notable for its durability and low cost. A detailed description of its design is included in the appendices. In summary, plastic materials can potentially be processed into growth media for microorganisms and can be used for production of value-added products. The media described herein can be used in bioconversion processes using a bioreactor.
7

Experimental investigation and computational modelling of the thermoforming process of thermoplastic starch

Szegda, Damian January 2009 (has links)
Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due largely to its complex compositions. Apart from limited recycling of some easily identifiable packaging wastes that can be separated economically, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin -wall structures. Hitherto these thin sheets have almost exclusively been made of oilbased polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This thesis describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets using a commercially available material. The experimental work has been carried in order to characterise the deformation behaviour of the material with regard to different temperature, moisture contents and strain rates. Thermoforming of the material was performed and samples produced were used for comparison and verification of the computational modelling of the thermoforming process. In the first attempt to model the thermoforming process, a hyperelastic constitutive equation was established to approximate the material behaviour taking account of the combined effects of temperature and moisture content and a simple ii membrane model with constrained deformation was used to model an axisymmetric case of thermoforming. Simulations with this model showed that moisture content mostly affects the pressure required to push the sheet into the mould while moisture variation during thermoforming has little effect on the final thickness distribution of the product. Considerable discrepancies were found in the thickness distribution between the predictions from the model and the experimental measurements. Further attempts were made to take account of the elasto-plastic behaviour of the material and a more complex three-dimensional FE model was developed using ANSYS/LS-DYNA. Based on the findings in the simpler modelling work, no attempt was made to incorporate the moisture content effect on material behaviour but the material parameters for the elasto-plastic constitutive equation were obtained from high speed tensile tests so that moisture variation during thermoforming could be minimised and neglected. The predictions from this model have led to significant improvements in prediction of the thickness distribution which has become much closer to the experimental measurements in comparison with the hyperelastic model. This work provides some important insights into thermoforming of thermoplastic starch materials: a) Deformation behaviour of such materials depends strongly on the moisture content and the temperature, both of which affect behaviour during thermoforming processes, including the preheating stage; b) moisture variation during the thermoforming process has a significant effect on the pressure required for the deformation. This also leads to variation of moisture content distribution in the final product, which in turn affects the material properties such as ductility or impact strength at different positions in the thermoformed structure; c) thermoforming of thermoplastic starch materials can be simulated more accurately by an elasto-plastic model and the LS-DYNA algorithm in comparison with a hyperelastic membrane model. This work has provided useful information on thermoforming of thermoplastic starch materials with particular reference to the design of thermoforming tools and to the careful control of processing conditions including preheating. It has also laid a solid foundation for future work on how the moisture variation impacts on the formation of defects such as incomplete forming due to material hardening and fracture due to loss of ductility.
8

Mélanges de polymères thermoplastiques à matrice biosourcée : amélioration de la résistance au choc d'un dérivé cellulosique / Biomass-based thermoplastic polymer blends : impact reinforcement of a cellulose derivative

Besson, François 18 December 2013 (has links)
Cette thèse s'inscrit dans le contexte de la Chaire Industrielle Bioplastiques, financé par MINES ParisTech et cinq entreprises partenaires : Arkema, L'Oréal, Nestlé, PSA Peugeot-Citroën et Schneider Electric, qui vise à développer de nouveaux matériaux biosourcés durables. L'objectif global de la thèse est de trouver de nouvelles propriétés à une ancienne famille de plastiques biosourcés – les esters de cellulose – en les mélangeant avec une polyoléfine. Nous avons débuté l'étude par une étape de screening qui nous a permis de caractériser l'ester de cellulose retenu (acétobutyrate de cellulose ou CAB) et de définir l'objectif de la thèse : améliorer la résistance au choc du CAB en y ajoutant une phase polyoléfinique finement dispersée. Le CAB est, en effet, particulièrement fragile : sa résilience est inférieure à 2 kJ/m² lors d'un choc Charpy entaillé. Pour diminuer la taille de nodules de la phase dispersée et la distance qui les sépare, deux approches ont été utilisés. Premièrement, plusieurs mélanges de CAB et de polyéthylènes (PE) de densités différentes ont été préparés par mélangeur interne. Des compatibilisants maléisés ont été utilisés pour diminuer la tension interfaciale entre les phases. Les tailles des nodules, mesurées par microscopie électronique à balayage se sont classées suivant les rapports de viscosité et d'élasticité (PE/CAB), mesurés par rhéométrie dynamique. La résilience de ces mélanges a été augmentée par rapport au CAB mais n'a pas dépassé 6 kJ/m². Dans la seconde approche, des polyoléfines fonctionnalisées (maléisées) ont été utilisées comme unique phase dispersée. La fonctionnalité accrue a permis d'améliorer l'adhésion interfaciale. La taille des nodules et leur espacement ont été considérablement réduits. Les mélanges sélectionnés ont été préparés par extrusion bi-vis et les éprouvettes de résistance au choc ont été préparées par injection. Pour quelques formulations, une longueur moyenne de ligaments de matrice (séparant deux nodules voisins) particulièrement petite (0,1 µm) a permis d'atteindre la transition fragile-ductile du matériau et une résilience supérieure à 60 kJ/m². / This work has been funded by the Industrial Chair in Biopalstics, financed by MINES ParisTech and fives industrial partners: Arkema, L'Oréal, Nestlé, PSA Peugeot-Citroën and Schneider Electric, whose objective is to develop new durable biobased materials. The aim of this thesis is to find new properties for an old-fashioned biobased plastic – cellulose esters – by blending with polyolefins. We started the project with a screening of the cellulose ester (cellulose acetate butyrate or CAB) properties. Thus, we were able to define the goal of the project: improving impact resistance of CAB by adding a finely dispersed polyolefin phase. Indeed, CAB is very brittle: its notched Charpy resilience is below 2 kJ/m². To decrease the size and the spacing of dispersed phase nodules, we developed two different approaches. First, several blends between CAB and polyethylenes (PE) with various densities have been prepared by internal mixer. Maleinated compatibilizers have been used to decrease interfacial tension between phases. Nodules sizes, measured from scanning electron microscope images ranked according to the viscosity and elasticity ratios (PE/CAB). Those ratios have been measured by dynamic rheometry. Blends resilience increased compared to CAB but did not exceed 6 kJ/m². In the second approach, functionalized (maleinated) polyolefins have been used as a single dispersed phase. Increased functionality led to improved interfacial adhesion. Nodules size and their spacing have been significantly decreased. Selected blends were prepared by twin-screw extrusion and impact bars were injected. For some formulations, a small (near 0.1 µm) mean matrix ligaments thickness (distance between two neighboring nodules) was obtained and led to the brittle-ductile transition of the material, with a resilience higher than 60 kJ/m².
9

Förseglingsegenskaper hos pappersförpackningar med konventionell plast och bioplast / Sealability of paper packaging containing conventional plastics and bioplastics

Karlsson, Sandra January 2012 (has links)
Pappersbaserade förpackningar är ett område som växer snabbt. För att hålla ihop en förpackning och skydda dess innehåll är det nödvändigt mednågon form av förslutningsystem. I projektet har förslutningar i form av varmförseglingar studerats för olika sorters förpackningsmaterial. Vidvarmförsegling pressar två varma metallbackar ihop materialen vilket gör att en försegling bildas mellan dem. Hur stark en försegling blir beror påmaterialegenskaper och på de parameterinställningar som används vid försegling. Vilken analysmetod och vilka inställningar proverna analyseratsmed påverkar de resultat som erhålls. Studien inkluderade flexibla material för applikationer inom medicin och livsmedel samt styva material vilkavar svåra att analysera med de analysmetoder som fanns tillgängliga. Förseglingar gjordes i laboratoriemiljö och i kommersiellatillverkningsmaskiner för att undersöka om dessa kan jämföras. Experimenten visar bland annat att förseglingsegenskaperna varierar beroende påtyp av plast och papper, materialets tjocklek och ytvikt. Förseglingsstyrkan är också olika beroende på om den testas längs eller tvärs materialetstillverkningsriktning. Genom en stor mängd analyser har en strategi för hur olika material bör utvärderas arbetats fram. / Paperboard and paper based solutions are of rapidly increasing interest to the packaging industry. Packaging needs a sealing system to keep theproduct inside safe. One common type of sealing is heat sealing, i.e. the materials are placed between two hot sealing bars which are closedtogether to form a seal. The strength of such seals depend on the properties of the material and the settings during sealing. The test method and thesettings used when analysing samples do also influence the results. This study of sealing properties includes flexible material for medicalapplications and materials used in food applications, as well as stiff and thick materials used in food applications which are harder to analyse usingcurrent methods. Sealing properties are for some materials compared between seals made in commercial packaging machines and seals made in thelaboratory. The results from this study show that sealability is dependent on 1) what kind of paper and what kind of plastic are used; 2) thicknessand weight of the material; and 3) whether the test is performed in or cross machine direction. Finally, a method is proposed on how to evaluatedifferent kinds of materials based on data generated by this study.
10

Utilização do óleo residual de fritura na produção de polihidroxialcanoatos / Use of waste fryng oil in the production of polyhyroxialcanoates

Rocha, Ligia Linardi Niero [UNESP] 31 July 2017 (has links)
Submitted by Ligia Linardi Niero Rocha null (ligialinardi@yahoo.com.br) on 2017-09-20T15:22:27Z No. of bitstreams: 1 dissertFICHAcatal.pdf: 1496895 bytes, checksum: 6610a394252f7529b5cbd64a98cedde0 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-20T18:31:24Z (GMT) No. of bitstreams: 1 rocha_lln_me_bot.pdf: 1496895 bytes, checksum: 6610a394252f7529b5cbd64a98cedde0 (MD5) / Made available in DSpace on 2017-09-20T18:31:24Z (GMT). No. of bitstreams: 1 rocha_lln_me_bot.pdf: 1496895 bytes, checksum: 6610a394252f7529b5cbd64a98cedde0 (MD5) Previous issue date: 2017-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os polihidroxialcanoatos (PHAs) são uma família de biopolímeros biodegradáveis, que podem substituir os plásticos petroquímicos em muitas aplicações, principalmente embalagens e utensílios domésticos. Contudo, estes bioplásticos são atualmente mais caros do que os de origem petroquímica. É possível encontrar vários estudos na literatura que investigam o uso de resíduos e substratos mais baratos, com o intuito de permitir a produção em grande escala do PHA. Os óleos vegetais são largamente utilizados na preparação de alimentos, na maioria das vezes no processo de fritura, o que acarreta grandes quantidades de resíduo, muitas vezes descartados incorretamente, trazendo prejuízo ao meio ambiente e à população. Sob esta consideração, os resíduos de óleo de fritura são abundantes e podem ser utilizados na produção de PHA sem qualquer tratamento adicional. Portanto, este trabalho analisou a produção de polihidroxialcanoatos (PHA) a partir de duas linhagens de bactérias, Pseudomonas oleovorans e Bacillus megaterium, utilizando-se óleos residuais de frituras como fonte de carbono (óleo residual de fritura de batata, frango e pastel) e foram utilizados nas concentrações de 10 g.l-1 e 20 g.l-1, separadamente. Os ensaios de produção do biopolímero foram realizados em frascos agitados, em meio de cultura limitante em nitrogênio. A massa seca celular (MSC) foi determinada por gravimetria e a porcentagem de acúmulo e a composição do PHA foram determinados por cromatografia gasosa. A melhor condição de reação foi observada no óleo residual de fritura de batata, no qual a bactéria Bacillus megaterium alcançou uma concentração de 13,03 % de acúmulo de PHA (% MSC) e 3,93 g.l-1 de massa seca celular. Pelos resultados obtidos pode-se concluir que esta alternativa é promissora, além de não competir com a produção baseada em fontes de açúcar, que é comercialmente utilizada. / Polyhydroxyalkanoates (PHAs) are a family of biodegradable biopolymers that can replace petrochemical plastics in many applications, especially packaging and household appliances. However, these bioplastics are currently more expensive than those of petrochemical origin. It is possible to find several studies in the literature that investigate the use of residues and cheaper substrates, in order to allow large scale production of the PHA. Vegetable oils are widely used in food preparation, most often in the frying process, which leads to large amounts of waste, often incorrectly discarded, causing damage to the environment and the population. Under this consideration, waste frying oils are abundant and can be used in the production of PHA without any further treatment. Therefore, this work studied the production of polyhydroxyalkanoates (PHA) from two strains of bacteria, Pseudomonas oleovorans and Bacillus megaterium, using waste frying oils as a source of carbon (waste oils from potato, chicken and pastel) and were used at concentrations of 10 g.l-1 and 20 g.l-1, separately. The biopolymer production assays were performed in shaken flasks, in nitrogen-limiting culture medium. The dry cell mass (DCM) was determined by gravimetry and the percentage of accumulation and the PHA composition were determined by gas chromatography. The best reaction condition was observed in the residual frying oil from potato, in which the bacterium Bacillus megaterium reached a PHA accumulation of 13.03 % and 3,93 g.l-1 of dry cell mass. From the results obtained it can be concluded that this alternative is promising, besides not competing with the production based on sources of sugar, that is commercially used.

Page generated in 0.0632 seconds