Spelling suggestions: "subject:"bioregeneration life support"" "subject:"proregenerative life support""
1 |
Plant Age Affects the Long-term Growth Responses to Reduced Total Pressure and Oxygen Partial PressureWehkamp, Cara Ann 14 September 2009 (has links)
Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, supply oxygen, and regenerate water while consuming carbon dioxide. Proposed Lunar and Martian exploration has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressure conditions will reduce the pressure gradient between the structure and the local environment thereby decreasing the engineering requirements, leakage and mass required to construct the growth facility. To establish the optimal conditions for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of this atmosphere. The effects of reduced atmospheric pressure and decreased oxygen partial pressures on plant germination, growth and development were assessed in the University of Guelph’s hypobaric plant growth chambers. Treatments included a range of total pressures from 10 to 98 kPa and oxygen partial pressures from 2 to 20 kPa. Results demonstrated that reduced atmospheric pressure had minimal effect on plant growth, net carbon exchange rate and transpiration if the physiologically important gases including carbon
dioxide, oxygen and water vapour, were maintained above threshold levels. The reduction of oxygen partial pressures below 7 kPa had drastic consequences across all atmospheric pressures with poor germination, seedling establishment and growth. It is evident that the response of plants grown at reduced pressures from young seedlings differs from that of older plants that were established at ambient conditions and then subjected to the atmospheric adjustment. The young plant tissues adapt in response to the extreme conditions and maintain productivity despite the limited atmosphere. / Natural Science and Engineering Research Council, Canadian Space Agency, Ontario Graduate Student Program, Canadian Foundation for Innovation, Ontario Innovation Trust
|
2 |
Aeration and Mode of Nutrient Delivery Affects Growth Of Peas in a Controlled EnvironmentRomagnano, Joseph F. 21 January 2004 (has links)
The development of a plant growth chamber capable of sustaining plant growth over multiple generations is a necessary step towards the attainment of a Controlled Ecological Life Support System (CELSS). The studies herein examine the effects of aeration abilities and rates on plants grown in three model nutrient delivery systems during germination and over the life-cycle of the plant. These studies are the first time a porous tube nutrient delivery system was compared to another active nutrient mist delivery system. During germination an indicator of hypoxic stress, alcohol dehydrogenase (ADH) activity, was measured and was more affected by aeration rate than mode of nutrient delivery. Over the life-cycle of the plant, however, plants grown in the porous tube system had the least ADH activity and the highest levels of shoot (leaf + stem), root and leaf biomass. None of the plants in any system, however, produced viable seed. This study highlights the need to optimize aeration capabilities in the root zone of enclosed chambers.
|
3 |
Développement de modèles physiques pour comprendre la croissance des plantes en environnement de gravité réduite pour des apllications dans les systèmes support-vie / Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systemsPoulet, Lucie 11 July 2018 (has links)
Les challenges posés par les missions d’exploration du système solaire sont très différents de ceux de la Station Spatiale Internationale, puisque les distances sont beaucoup plus importantes, limitant la possibilité de ravitaillements réguliers. Les systèmes support-vie basés sur des plantes supérieures et des micro-organismes, comme le projet de l’Agence Spatiale Européenne (ESA) MELiSSA (Micro Ecological Life Support System Alternative) permettront aux équipages d’être autonomes en termes de production de nourriture, revitalisation de l’air et de recyclage d’eau, tout en fermant les cycles de l’eau, de l’oxygène, de l’azote et du carbone, pendant les missions longue durée, et deviendront donc essentiels.La croissance et le développement des plantes et autres organismes biologiques sont fortement influencés par les conditions environnementales (par exemple la gravité, la pression, la température, l’humidité relative, les pressions partielles en O2 et CO2). Pour prédire la croissance des plantes dans ces conditions non-standard, il est crucial de développer des modèles de croissance mécanistiques, permettant une étude multi-échelle des différents phénomènes, ainsi que d’acquérir une compréhension approfondie de tous les processus impliqués dans le développement des plantes en environnement de gravité réduite et d’identifier les lacunes de connaissance.En particulier, les échanges gazeux à la surface de la feuille sont altérés en gravité réduite, ce qui pourrait diminuer la croissance des plantes dans l’espace. Ainsi, nous avons étudié les relations complexes entre convection forcée, niveau de gravité et production de biomasse et avons trouvé que l’inclusion de la gravité comme paramètre dans les modèles d’échanges gazeux des plantes nécessite une description précise des transferts de matière et d’énergie dans la couche limite. Nous avons ajouté un bilan d’énergie au bilan de masse du modèle de croissance de plante déjà existant et cela a ajouté des variations temporelles sur la température de surface des feuilles.Cette variable peut être mesurée à l’aide de caméras infra-rouges et nous avons réalisé une expérience en vol parabolique et cela nous a permis de valider des modèles de transferts gazeux locaux en 0g et 2g, sans ventilation.Enfin, le transport de sève, la croissance racinaire et la sénescence des feuilles doivent être étudiés en conditions de gravité réduite. Cela permettrait de lier notre modèle d’échanges gazeux à la morphologie des plantes et aux allocations de ressources dans une plante et ainsi arriver à un modèle mécanistique complet de la croissance des plantes en environnement de gravité réduite. / Challenges triggered by human space exploration of the solar system are different from those of the International Space Station because distances and time frames are of a different scale, preventing frequent resupplies. Bioregenerative life-support systems based on higher plants and microorganisms, such as the ESA Micro-Ecological Life Support System Alternative (MELiSSA) project will enable crews to be autonomous in food production, air revitalization, and water recycling, while closing cycles for water, oxygen, nitrogen, and carbon, during long-duration missions and will thus become necessary.The growth and development of higher plants and other biological organisms are strongly influenced by environmental conditions (e.g. gravity, pressure, temperature, relative humidity, partial pressure of O2 or CO2). To predict plant growth in these non-standard conditions, it is crucial to develop mechanistic models of plant growth, enabling multi-scale study of different phenomena, as well as gaining thorough understanding on all processes involved in plant development in low gravity environment and identifying knowledge gaps.Especially gas exchanges at the leaf surface are altered in reduced gravity, which could reduce plant growth in space. Thus, we studied the intricate relationships between forced convection, gravity levels and biomass production and found that the inclusion of gravity as a parameter in plant gas exchanges models requires accurate mass and heat transfer descriptions in the boundary layer. We introduced an energy coupling to the already existing mass balance model of plant growth and this introduced time-dependent variations of the leaf surface temperature.This variable can be measured using infra-red cameras and we implemented a parabolic flight experiment, which enabled us to validate local gas transfer models in 0g and 2g without ventilation.Finally, sap transport needs to be studied in reduced gravity environments, along with root absorption and leaf senescence. This would enable to link our gas exchanges model to plant morphology and resources allocations, and achieve a complete mechanistic model of plant growth in low gravity environments.
|
Page generated in 1.2778 seconds