• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biostability In Drinking Water Distribution Systems Study At Pilot-scale

Le Puil, Michael 01 January 2004 (has links)
Biostability and related issues (e.g. nitrification) were investigated for 18 months in 18 pilot distribution systems, under various water quality scenarios. This study specifically investigated the impact of steady-state water changes on HPC levels in chlorinated and chloraminated distribution systems. Chlorination was more effective than chloramination in reducing HPC levels (1-2 log difference). There was a rapid increase in HPC corresponding to the change in steady-state water quality, which was observed in all PDS. Modeling effort demonstrated that HPC levels reached a maximum within five days after water quality change and return to initial level ten days after the change. Since alkalinity was used as a tracer of the steady-state water quality change, time to reach maximum HPC was related to a mixing model using alkalinity as a surrogate that confirmed alkalinity transition was complete in approximately eight days. Biostability was assessed by HPC levels, since no coliform were ever detected. It was observed that HPC levels would be above four logs if residual droped below 0.1-0.2 mg/L as Cl?, which is below the regulatory minimum of 0.6 mg/L as Cl?. Therefore bacterial proliferation is more likely to be controlled in distribution systems as long as residual regulatory requirements are met. An empirical modeling effort showed that residual, pipe material and temperature were the most important parameters in controlling HPC levels in distribution systems, residual being the only parameter that can be practically used by utilities to control biological stability in their distribution systems. Use of less reactive (i.e. with less chlorine demand) pipes is recommended in order to prevent residual depletion and subsequent bacterial proliferation.This study is investigated biofilm growth simultaneously with suspended growth under a wide range of water quality scenarios and pipe materials. It was found that increasing the degree of treatment led to reduction of biofilm density, except for reverse osmosis treated groundwater, which exerted the highest biofilm density of all waters. Biofilm densities on corrodible, highly reactive materials (e.g. unlined cast iron and galvanized steel) were significantly greater than on PVC and lined cast iron. Biofilm modeling showed that attached bacteria were most affected by temperature and much less by HRT, bulk HPC and residual. The model predicts biofilms will always be active for environments common to drinking water distribution systems. As American utilities do not control biofilms with extensive and costly AOC reduction, American utilities must maintain a strong residual to maintain biological integrity and stability in drinking water distribution systems.Nitrite and nitrate were considered the most suitable indicators for utilities to predict onset of a nitrification episode in the distribution system bulk liquid. DO and ammonia were correlated to production of nitrite and nitrate and therefore could be related to nitrification. However since ammonia and DO consumptions can be caused by other phenomena than nitrification (e.g. oxidation by disinfectant to nitrite and reduction at the pipe wall, respectively), these parameters are not considered indicators of nitrification.Ammonia-Oxidizing Bacteria (AOB) densities in the bulk phase correlated well with nitrite and nitrate production, reinforcing the fact that nitrite and nitrate are good monitoring tools to predict nitrification. Chloramine residual proved to be helpful in reducing nitrification in the bulk phase but has little effect on biofilm densities. As DO has been related to bacterial proliferation and nitrification, it can be a useful and inexpensive option for utilities in predicting biological instability, if monitored in conjunction with residual, nitrite and nitrate. Autotrophic (i.e. AOB) and heterotrophic (i.e. HPC) organisms were correlated in the bulk phase and biofilms.
2

In vivo cell/polymer interactions and polyurethane biostability

Zhao, Qing-Hong January 1992 (has links)
No description available.
3

Biostability/biodegradation of poly(ether urethane)s

Wu, Yong Kang January 1994 (has links)
No description available.
4

Effects of Aqueous Chlorhexidine Gluconate Exposure on Thermal, Mechanical and Chromatographic Properties of Polycarbonate and Polyether Urethanes

Tatu, Rigwed R. 13 October 2014 (has links)
No description available.
5

Evaluation de couches barrières biocompatibles pour l’encapsulation de dispositifs médicaux microélectroniques / Evaluating biocompatible barrier films as encapsulants of medical micro devices

Herrera Morales, Jorge Mario 23 November 2015 (has links)
Les dispositifs médicaux miniaturisés sont de plus en plus répandus dans le monde médical, car ils offrent de nouvelles opportunités de traitement et de surveillance. La miniaturisation des systèmes permet notamment une chirurgie minimalement invasive, une portabilité améliorée et une facilité d'utilisation. Parmi les exemples on peut mentionner les micro-stimulateurs cardiaques, les micro-implants cochléaires et les micro-capteurs ex-situ de glucose. Cependant, les micro-dispositifs implantables qui utilisent des technologies d'assemblage autres que les boîtiers métalliques sont encore à découvrir. La surveillance de paramètres physiologiques à l'aide de capteurs in-situ de pression et BioMEMS pourraient bénéficier des progrès faits sur les études d'encapsulation en couche mince destinées à protéger les micro-dispositifs de silicium contre la corrosion. En effet, une barrière qui empêche la diffusion et la pénétration des substances nocives est indispensable pour protéger à la fois le patient et le micro-dispositif. Les couches minces céramiques déposées par des procédés chimiques en phase vapeur sont de bons candidats grâce à leurs faibles perméabilités aux gazes, faibles réactivités chimique et conformités de dépôt élevées. Cependant, dans des milieux biologiques représentatifs du corps humain, peu d'études ont été réalisées dans le domaine de la protection des dispositifs microélectroniques contre la corrosion.Au cours de cette thèse, dix matériaux, choisis à l'issue d'une étude bibliographique, ont été étudiés: Al2O3, BN, DLC, HfO2, SiC, SiN, SiO2, SiOC, TiO2 et ZnO. Des couches ultrafines de ces matériaux (de 5 à 100 nm) ont été déposées par voie chimique en phase vapeur assisté par plasma (PECVD) ou par couches atomiques (ALD) sur des substrats silicium recouverts de matériaux généralement présents dans des dispositifs microélectroniques tels que le silicium cristallin, le cuivre, le tungstène nitrure et le poly-imide. Des mesures de cytotoxicité ont été réalisées et des tests de vieillissement ont été effectués pendant plusieurs semaines à des températures différentes dans une solution saline phosphatée (PBS) mais aussi dans une solution à base de sérum de veau fœtale (NaCl/SVF). Les changements dans la composition chimique et l'épaisseur ont été suivies par VASE, XPS et spectroscopie de masse d'ions secondaires à temps de vol (TOF-SIMS). Il a été montré que les couches de SiO2 et de SiN (généralement utilisées pour la protection dans l'industrie de la microélectronique) n'étaient pas stables dans le PBS et le NaCl/SVF à 37°C, même si en revanche elles offraient une bonne barrière aux gazes. L'Al2O3 a lui montré une très bonne tenu en milieu salin et une remarquable herméticité mais en revanche, il s'est corrodé rapidement dans le NaCl/SVF. Les couches de DLC, SiOC et TiO2 ont donné les meilleurs résultats de stabilité dans le PBS et le sérum de veau. Enfin, il a aussi été montré dans cette thèse que l'empilement TiO2 sur Al2O3 offrait la meilleure efficacité comme barrière hermétique et diffusive pour la protection des microsystèmes de silicium contre la corrosion dans les milieux salins. / Miniaturized medical devices are becoming increasingly adopted by doctors and patients because they enable new treatment and monitoring capabilities, minimally invasive surgery, improved portability and ease of use. Recent examples include micro pacemakers, micro cochlear implants and ex-situ micro glucose sensors. However, implantable micro devices employing packaging technologies other than metallic enclosures are yet to be seen. Physiological monitors such as in-situ pressure sensors and BioMEMS could profit significantly from advances in thin barrier films for corrosion protection of silicon micro devices. Coating films that stop the diffusion and permeation of harmful substances are necessary to protect both the patient and the micro device. Ceramic films deposited by chemical vapor deposition techniques are good candidates for this task due to their low permeability to gases, low chemical reactivity and high conformality. However, few studies are available about the corrosion protection offered by biocompatible coatings to microelectronic devices in representative biological environments.Ten materials were selected in this thesis after a bibliographic study: Al2O3, BN, DLC, HfO2, SiC, SiN, SiO2, SiOC, TiO2 and ZnO. Ultra-thin films of these materials (5-100 nm) were deposited by plasma enhanced chemical vapor deposition (PECVD) or atomic layer deposition (ALD) on substrates commonly found in electronic micro devices: crystalline silicon, copper, tungsten nitride and polyimide. In vitro cytotoxicity tests and degradation tests were performed for several weeks at different temperatures in Phosphate Buffer Saline (PBS) and NaCl supplemented with 10% Fetal Bovine Serum (NaCl/FBS). Changes in thickness and chemical composition were monitored by VASE, XPS and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that SiO2 and SiN films (generally used for protection in the microelectronics industry) are not stable in PBS and NaCl/FBS at 37°C, even though they act as good hermetic barriers. Al2O3 showed very good stability in saline solution and excellent behavior as gas barrier, but it was rapidly dissolved in NaCl/FBS.In contrast, films of DLC, SiOC and TiO2 showed very low chemical reactivity in both mediums. Finally, it was shown that multilayers of TiO2 on Al2O3 offer the best performance as hermetic and diffusion barriers for corrosion protection of silicon micro systems in saline environments.
6

Nitrification Investigation And Modeling In The Chloraminated Drinking Water Distribution System

Liu, Suibing 01 January 2004 (has links)
This dissertation consists of five papers concerning nitrification in chloraminated drinking water distribution systems in a one and a half year field study. Seven finished waters were produced from different treatment processes and distributed to eighteen pilot distribution systems (PDSs) that were made pipes taken from actual distribution systems. Unlined cast iron (UCI), galvanized steel (G), lined cast iron (LCI), and PVC pipes were used to build the PDSs. All finished waters were stabilized and chloraminated before entering the PDSs. This dissertation consists of five major parts. (1) System variations of nitrates, nitrites, DO, pH, alkalinity, temperature, chloramine residuals and hydraulic residence times (HRT) during biological nitrification are interrelated and discussed relative to nitrification, which demonstrated Stoichiometric relationships associated with conventional biochemical nitrification reactions. Ammonia is always released when chloramines are used for residual maintenance in drinking water distribution systems, which practically insures the occurrence of biological nitrification to some degree. Biological nitrification was initiated by a loss of chloramine residual brought about by increasing temperatures at a five day HRT, which was accompanied by DO loss and slightly decreased pH. Ammonia increased due to chloramine decomposition and then decreased as nitrification began. Nitrites and nitrates increased initially with time after the chloramine residual was lost but decreased if denitrification began. Dissolved oxygen limited nitrifier growth and nitrification. No significant alkalinity variation was observed during nitrification. Residual and nitrites are key parameters for monitoring nitrification in drinking water distribution systems. (2) Using Monod kinetics, a steady state plug-flow kinetics model was developed to describe the variations of ammonia, nitrite and nitrate-N concentrations in a chloraminated distribution system. Active AOB and NOB biomass in the distribution system was determined using predictive equations within the model. The kinetic model used numerical analysis and was solved by C language to predict ammonia, nitrite, nitrate variation. (3) Nitrification control strategies were investigated during an unexpected episode and controlled study in a field study. Once nitrification began, increasing chloramine dose from 4.0 to 4.5 mg/L as Cl2 and Cl2:N ratio from 4/1 to 5/1 did not stop nitrification. Nitrification was significantly reduced but not stopped, when the distribution system hydraulic retention time was decreased from 5 to 2 days. A free chlorine burn for one week at 5 mg/L Cl2 stopped nitrification. In a controlled nitrification study, nitrification increased with increasing free ammonia and Cl2:N ratios less than 5. Flushing with increased chloramine concentration reduced nitrification, but varying flush frequency from 1 to 2 weeks had no effect on nitrification. (4) HPC variations in a chloraminated drinking water distribution system were investigated. Results showed average residual and temperature were the only water quality variables shown to affect HPC change at a five day distribution system hydraulic residence time was five days. Once nitrification began, HPC change was correlated to HRT, average residual and generated nitrite-N in the distribution system. (5) Biostability was assessed for water treatment processes and distribution system pipe by AOCs, BDOCs, and HPCs of the bulk water, and by PEPAs of the attached biofilms. All membrane finished waters were more likely to be biologically stable as indicated by lower AOCs. RO produced the lowest AOC. The order of biofilm growth by pipe material was UCI > G > LCI > PVC. Biostability decreased as temperature increased.
7

Recombinant elastin-mimetic protein polymers as design elements for an arterial substitute

Sallach, Rory Elizabeth 19 May 2008 (has links)
Recombinant synthesis of elastin-mimetic proteins has been employed for several decades, however, long-term biocompatibility and biostability of such proteins was not fully defined. We present virtually crosslinked elastin-mimetic proteins which exhibit exceptional biocompatibility and long-term biostability over a period of at least seven months. This report is the first evidence of a non-chemically or ionically crosslinked system that exhibits long-term in vivo stability. Although, physically crosslinked protein-based materials possess a number of advantages over their chemically crosslinked counterparts, physical crosslinks and the related domains so formed may be deformed or damaged at applied stresses lower than those required to disrupt covalent crosslinks. In this regard, we have synthesized a new class of recombinant elastin-mimetic triblock copolymer capable of both physical and chemical crosslinking. We have demonstrated that chemical crosslinking provides an independent mechanism for control of protein mechanical responses. Specifically, elastic modulus was enhanced and creep strain reduced through the addition of chemical crosslinking sites. A number of reports have described the design of synthetic genes, which encode elastin-like proteins for bacterial expression in Escherichia coli. Although advantages with this expression system exist, significant limitations including the lack of eukaryotic post-translational systems, the tendency to sequester mammalian proteins into inclusion bodies, difficult purification protocols, and endotoxin contamination have been noted. We demonstrate the expression of a recombinant elastin-mimetic protein from P. pastoris. A novel synthetic strategy, monomer library concatamerization, was utilized in designing non-repetitive elastin genes for highly repetitive protein sequences. It is likely that this strategy will be useful for creating large, repetitive genes for a variety of expression systems in order to more closely approach the genetic diversity inherent to native DNA sequences. All told, elastin-based protein polymers are a promising class of material characterized by high degree of biocompatibility, excellent biostability, and a tunable range of mechanical properties from plastic to elastic. A variety of options facilitate the processing of these biopolymers into chemically crosslinked or non-crosslinked gels, films, or nanofibers for any of a number of implant applications including structural components of artificial organs and engineered living tissues, carriers for controlled drug release, or biocompatible surface coatings.

Page generated in 0.0445 seconds