• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • 1
  • Tagged with
  • 31
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photobiological effects of low intensity laser irradiation on the human leukaemic cell lines HL-60 and U937

O'Kane, Sharon January 1994 (has links)
No description available.
2

THE EFFECT OF THERMALLY AND CHEMICALLY ENHANCED BIOSTIMULATION ON THE HYDRAULIC PROPERTIES OF A DISCRETE FRACTURE NETWORK IN A BEDROCK AQUIFER.

SMITH, REID T 06 December 2010 (has links)
The impact of thermally and chemically enhanced biostimulation of indigenous bacteria in a fractured rock aquifer and the resulting changes in hydraulic properties of the discrete fracture network were investigated at the field scale in this study. A field trial was conducted using five 30 m deep vertical boreholes drilled into limestone and granite geological units in a 100 m2 section of a field in Kingston, Ontario. Prior to a 14 day biostimulation experiment, pulse interference tests and tracer experiments were conducted between the various boreholes to characterize the fracture permeability and connections. Biostimulation methods were applied using a semi-passive injection withdrawal flow field. During periods of injection withdrawal, groundwater was recirculated at 15 ±2 Lpm through an aboveground reservoir (460 L) and gravity drainage system. Recirculating groundwater temperature was raised to 20°C - 25°C and a 4.5 L sodium lactate based nutrient solution was injected once daily. During biostimulation the groundwater temperature, geochemistry, microbiology and fracture hydraulic properties between the recirculating borehole pair were monitored. Hydraulic testing results showed that borehole transmissivity was reduced by up to 92% (injection borehole) of pre-biostimulation values and transmissivity of multiple borehole connections had been reduced by up to five orders of magnitude. The results of the tracer experiments showed an increase in solute tortuosity and arrival time and a decrease in peak concentration following biostimulation. The changes in transport observed in the tracer experiments are corroborated by heat transport measurements in the recirculation borehole pair. Microbiological and geochemical evidence of biological growth were observed in recirculating groundwater, but absent in the groundwater samples analyzed. Visual observations confirmed the increase in biological growth, although no direct characterization of the microbial community was performed. This study indicates the semi-passive operation of thermally and chemically enhanced biostimulation can provide a successful method for bioclogging a discrete fracture network. Pulse interference tests and tracer experiments were necessary to effectively evaluate the growth and distribution of the biobarrier, which developed beyond the influence of the injection well. Additional research is required to develop a better understanding of the factors governing biobarrier formation and longevity prior to industrial application. / Thesis (Master, Civil Engineering) -- Queen's University, 2010-12-03 14:19:33.755
3

Assessment of Management Factors Prior to Breeding and their Impact on Bovine Fertility

Pfeiffer, Kathryn Erin 12 May 2012 (has links)
Management of female infertility is a primary determinant of economic efficiency in the cattle industry. Management factors involved in impacting fertility include identification of females with suboptimal fertility and reducing the period of anestrus, prior to pubescence and after parturition. The use of anti-Müllerian hormone in the identification of females with suboptimal follicular populations allows for selection of females with optimal follicular populations and could reduce infertility resulting from a decrease in the quantity of follicles. A reduction in the period of anestrus also impacts fertility and management strategies that induce an ovulatory response in anestrous females improves fertility. Biostimulation has advanced pubescence in heifers and reduced the length of postpartum anestrus in cows. Advancing the understanding of anti-Müllerian hormone and the biostimulatory effect allows for further assessment of these management factors and their impact on infertility. Improved management of female infertility increases profitability of cattle production.
4

LABORATORY STUDIES OF BIOBARRIER TECHNOLOGY IN FRACTURED ROCK

Mann, VANESSA 27 November 2012 (has links)
Experiments exploring transport and bio-containment of contaminants in fractured rock were completed using fractured-limestone samples obtained in eastern Ontario, Canada. Three single-fracture samples, a fracture-intersection sample and a fracture-network sample were set into vertical flow systems. Three phases of experiments focused on the transport and hydraulic properties of each sample, the effects of biobarriers on diffusion processes in fracture rock, and methods of improving biobarrier stability and survivability. Hydraulic apertures were determined from constant-flow measurements and transport properties were interpreted from Lissamine and KBr tracer experiments with velocities of up to 8500 m/d for all five samples. At Re > 16, linear to non-linear transitions were observed in enlarged single fracture A and the fracture intersection samples. Reversible increases in aperture were observed at Reynolds numbers (Re) of 7, 4, and 3 for single fractures A and B, and the fracture-network, respectively. Non-linear effects were not observed in these samples over the range of velocities studied (up to Re = 20). Results from the 1-D analytical transport model overestimated values of matrix porosity, suggesting that diffusion from dead zones and slow-flowing regions are also contributing to observed breakthrough curves. Methods of improving biobarrier stability in fractured rock were studied in two single-fracture samples and the fracture-network sample by stimulating naturally-occurring groundwater bacteria. Survivability was improved with successive cycles of feeding and starving and stimulating growth at lower temperatures. Modeled values of matrix porosity decreased by up to 50%, indicating that diffusion processes are strongly influenced by biofilm development. Back diffusion of Lissamine was measured using one single-fracture sample and the fracture-intersection sample. Lissamine was allowed to diffuse into the matrix of each sample and, following a suitable loading period, the back-diffusion of residual Lissamine concentrations were measured from the outflow. This was done in the presence and absence of biofilm, and following the introduction of biofilm onto the fracture surfaces, diffusion was no longer a governing process affecting transport and only advective transport was observed. Experiments were interpreted using a 3-D finite difference model with a three-layer porosity approach, and indicated a decrease in aperture and porosity following biostimulation. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2012-11-22 11:23:24.065
5

The physiology of mycorrhizal Lolium multiflorum in the phytoremediation of petroleum hydrocarbon-contaminated soil

Alarcon, Alejandro 02 June 2009 (has links)
Arbuscular mycorrhizal fungi (AMF) can play an important role in the phytoremediation of petroleum hydrocarbon (PH)-contaminated soil. However, little is known about the effects of AMF in combination with biostimulation via fertilization or bioaugmentation with hydrocarbonoclastic microorganisms, during phytoremediation of PH in soils. This research evaluated the influence of the AMF Glomus intraradices and inorganic fertilization on growth and physiological responses of Lolium multiflorum Lam. cv. Passarel Plus during phytoremediation of soil contaminated with Arabian medium crude oil (ACO). Also determined was the interaction of AMF with the hydrocarbonoclastic bacterium, Sphingomonas paucimobilis EPA505 (Sp), and the filamentous fungus, Cunninghamella echinulata var. elegans ATCC-36112 (Ce), on growth and selected physiological responses of L. multiflorum during phytoremediation of soil contaminated with benzo[a]pyrene (BaP) or ACO. This research provides evidence that AMF enhance the phytoremediation of petroleum hydrocarbons in soils when inoculated with L. multiflorum. The concentration of petroleum hydrocarbons in soil was a determining factor of potential benefits of AMF on L. multiflorum. Low (3000 mg·kg-1) or high (15000 mg·kg-1) concentrations of ACO resulted in limited benefits of AMF on plant growth, physiology, and degradation of ACO in soil. However, when plants were exposed to an intermediate ACO concentration in soil (6000 mg·kg-1), AMF plants had enhanced growth, physiological responses, and greater ACO-degradation than non-AMF plants. The AMF symbiosis in roots of plants was observed at all concentrations of ACO-contaminated soil. This research is one of the first reports demonstrating the benefits of AMF on the degradation of benzo[a]pyrene or ACO, alone or in combination, with the hydrocarbonoclastic microorganisms. Thus, AMF resulted in a beneficial synergism with the hydrocarbonoclastic microorganisms, particularly during ACO-degradation in the rhizosphere of L. multiflorum. Hydrocarbonoclastic microorganisms had no negative effects on AMF colonization.
6

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant

Basu, Pradipta Ranjan 29 August 2005 (has links)
Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum hydrocarbon as their substrate for growth and energy, thereby degrading them. Biodegradation of hydrocarbons is often enhanced by bioaugmentation and biostimulation depending on the contaminated environment and the competence of the hydrocarbon degraders present. An evaluation of the performance of the biological treatment of petroleum hydrocarbon by the hydrocarbon degrading microbes at the Brayton Fire School??s 4 million gallon per day (MGD) wastewater treatment plant was the main research objective. Samples were taken for two seasons, winter (Nov 03 ?? Jan 03) and summer (Jun 04 ?? Aug 04), from each of the four treatment units: the inlet tank, equalization tank, aeration tank and the outfall tank. The population of aliphatic hydrocarbon degraders were enumerated and nutrient availability in the system were used to evaluate the effectiveness of on-going bioaugmentation and biostimulation. Monitoring of general effluent parameters was conducted to evaluate the treatment plant??s removal efficiency and to determine if effluent discharge was in compliance with the TCEQ permit. The aeration tank is an activated sludge system with no recycling. Hydrocarbon degraders are supplied at a constant rate with additional nutrient supplement. There was a significant decrease in the population of microbes that was originally fed to the system and the quantity resident in the aeration tank. Nutrient levels in the aeration tank were insufficient for the concentration of hydrocarbon degraders, even after the application of dog food as a biostimulant. The use of dog food is not recommended as a nutrient supplement. Adding dog food increases the nitrogen and phosphorus concentration in the aeration tank but the amount of carbon being added with the dog food increases the total chemical oxygen demand (COD) and biochemical oxygen demand (BOD). An increase in the concentration of total COD and BOD further increases the nitrogen and phosphorus requirement in the system. The main objective of supplying adequate nutrients to the hydrocarbon degraders would never be achieved as there would be an additional demand of nutrients to degrade the added carbon source. This research study was conducted to identify the drawbacks in the treatment plant which needs further investigation to improve efficiency.
7

Avaliação do uso do laser e processos fotodinâmicos na estimulação e crescimento celular de osteoblastos. Avaliação fotofísica e fotobiológica na presença e ausência de fármacos fotossensíveis / Evaluation of the use of laser and photodynamic processes in cell growth and stimulation of osteoblasts. Evaluation photophysical and photobiology in the presence and absence of drugs designed

Zancanela, Daniela Cervelle 26 May 2009 (has links)
O laser é uma fonte de radiação não ionizante altamente concentrada que em contato com diferentes tecidos resulta, de acordo com o tipo de laser, em efeitos térmicos, fotoquímicos e não lineares. Atualmente, o laser tem sido rotineiramente empregado em diversas áreas da ciência, assim como na Medicina e Odontologia. Os tratamentos com utilização de radiação a laser de baixa intensidade na odontologia são de grande interesse para as áreas de cirurgia buco-maxilo-facial e implantodontia sendo usado para a estimulação do processo de osteogênese. Um novo tratamento promissor envolve o processo fotodinâmico e emprega a combinação de dois agentes terapêuticos: um fármaco fotossensível e uma baixa dosagem de luz visível que combinados em presença de oxigênio provocam a bioestimulação celular. É um método eficiente, não-invasivo. Avaliar a utilização do fármaco fotossensível derivado das ftalocianinas com a ftalocianina de cloro-alumínio para o uso no tratamento para estimulação da osteogênese é o objetivo deste trabalho, será avaliado também a potencialidade terapêutica do processo. Na tentativa de se obter melhores resultados com esses fármacos, tem surgido nos últimos anos um interesse muito grande no desenvolvimento de formulações nanoestruturadas, dentro de uma linha altamente emergente de pesquisa a Nanobiotecnologia. Neste contexto, surge dentre os vários sistemas de veiculação disponíveis, as nanoemulsões, que permitem solubilizar fármacos hidrofóbicos em água, mantendo suas características físico-químicas. / The laser is a source of non ionizing radiation highly concentrated and coherent that in contact with different tissues induce thermal, photochemical and non-linear effects according to the type of the laser. Currently, the laser has been used routinely in many areas of science, as well as in medicine and dentistry. The treatments using laser radiation of low intensity in dentistry are of great interest specially in the areas of surgery bucco-maxillo-facial and dental implants and its being used to stimulate the process of osteogenesis. A promising new treatment in dentistry area involves the photodynamic process and employs a combination of two therapeutic agents: a photosensitizers drug and a low dose of visible light that combined in the presence of oxygen could induce cellular biostimulation. It is an efficient non-invasive method. Evaluate the use of the drug derived system to administrate photosensitizers as phthalocyanine derivatives chlorine-aluminum specifically for the use in treatment and stimulation of the osteogenesis is the main objective of this work. It will be also evaluated the therapeutic potential of the process. In an attempt to obtain better biocompatibility of these drugs it has developed in recent years an additional interest in the development of nanostructured formulations, focused in a highly emerging line of research the Nanobiotechnology. The nanoemulsion formulation was selected to this work. It was showed that the hydrophobic drugs choose for this work maintaining its photophysical and chemical characteristics in this medium applicable to biological tissue.
8

Demonstration of Nitrate-Enhanced In Situ Bioremediation at a Petroleum Hydrocarbon Contaminated Site

Holtze, Dale Leslie January 2011 (has links)
Alternative strategies involving in situ remediation technologies have been developed to assist with property clean up, however, cost-effectiveness and discrepancies in success rates and timeliness continue. The objective of my research was to critically demonstrate the application and usefulness of an in situ remediation technology at a petroleum hydrocarbon impacted site. This project was proposed as part of the research programs: Groundwater Plume Formation and Remediation of Modern Gasoline Fuels in the Subsurface and Enhancing In Situ Bioremediation at Brownfield Sites funded by the Ontario Centres of Excellence for Earth and Environmental Technologies as part of the multiphase project entitled “Enhancing in situ Bioremediation at Brownfield Sites”. This research focused on the demonstration of nitrate-enhanced in situ bioremediation at a decommissioned service station. Petroleum hydrocarbon impacted soil and groundwater is a common occurrence at gasoline distribution facilities, where toxicological effects are known for gasoline constituents of interest such as benzene, toluene, ethylbenzene and total xylenes (BTEX). These chemicals are volatile, readily soluble, and persistent in groundwater. In particular, residual contaminants present in the saturated zone were targeted for remediation as they serve as a long term source of contamination and contribute to mobile vapour phase and dissolved phase plumes. Site investigations characterized the complex hydrogeological conditions and contaminant distribution present in order to effectively design an in situ bioremediation treatment system. The addition of nitrate as a terminal electron acceptor (TEA) to an aquifer enhances in situ biodegradation of petroleum hydrocarbons, by providing the microbes with a sustainable energy source to promote cell maintenance and growth of the microbial population. The remediation strategy involved pulsed injections of remedial solution amended with a conservative bromide (200 mg/L Br-) and reactive nitrate (90 to 265 mg/L NO3-) tracers with the purpose of providing a continuous supply of TEA available to the indigenous microbial populations. Nitrate was selected as an alternative electron acceptor over the thermodynamically favoured O2 because of typical challenges encountered using O2 in bioremediation applications in addition to the existing anaerobic environment. In situ anaerobic degradation of BTEX compound using TEA amendments has been well documented; however benzene is often recalcitrant under denitrification conditions. The results of the Br- tracer breakthrough curves indicate that different preferential flow pathways were established under the transient saturated conditions present at the Site, although the behaviour of the injected remedial slug was generally consistent between the different units and the test solution was ultimately delivered to the target zone. The delivery of the remedial test solution was greatly influenced by the hydrogeological conditions present at the time of injection. The injectate was preferentially transported in the high permeability zone of sandy gravel aquifer Unit 3 under high saturated condition and background hydraulic gradients. However the seasonal decline in groundwater levels and hydraulic gradients resulted in the lower portion of Unit 4 comprised of higher permeable materials being able to transmit the test solution more effectively. Given the variable hydrogeological conditions present at the Site influenced by seasonal effects, the delivery of the remedial solution to target zones containing petroleum hydrocarbons at residual saturation is more effective under reduced saturated conditions. The delivery of TEA amended water to enhance the in situ biodegradation of petroleum contaminants is more effective when the treatment water has an increased residence time in the target remedial zone, attributed to low gradients and groundwater transport velocities at the Site. Longer residence periods enable the indigenous microbes to have increased contact time with the TEA which will be preferentially utilized to degrade the contaminants.   A reducing zone enriched with TEA in the anaerobic aquifer was established following consecutive injections of remedial test solution. A cumulative mass of 4 kg of NO3- was added to the target aquifer during the course of the remedial injections. Evidence demonstrating NO3- utilized as a terminal electron acceptor in the bioremediation of the petroleum-contaminated aquifer include: laboratory microcosm study confirming local indigenous microbial population’s ability to degrade hydrocarbons using NO3- as the TEA in addition to observed decrease in NO3- relative to a conservative Br- tracer and generation of nitrite, an intermediate product in denitrification in the pilot-scale operation. Contaminant mass removal likely occurred as Br- tracer evidence indicates that NO3- was utilized in the study area based on the inference of denitrification rates. Post-injection groundwater sampling indicate declining concentrations of toluene, however long term monitoring is recommended in order to evaluate the success of the remediation activity and assess the potential for rebound. Post-injection soil core results are unable to demonstrate the reduction in individual toluene, let alone BTEXTMB hydrocarbon levels, as a result of insufficient quantities of nitrate delivered to the target zone relative to the significant but heterogeneously distributed residual mass in the subsurface.
9

Demonstration of Nitrate-Enhanced In Situ Bioremediation at a Petroleum Hydrocarbon Contaminated Site

Holtze, Dale Leslie January 2011 (has links)
Alternative strategies involving in situ remediation technologies have been developed to assist with property clean up, however, cost-effectiveness and discrepancies in success rates and timeliness continue. The objective of my research was to critically demonstrate the application and usefulness of an in situ remediation technology at a petroleum hydrocarbon impacted site. This project was proposed as part of the research programs: Groundwater Plume Formation and Remediation of Modern Gasoline Fuels in the Subsurface and Enhancing In Situ Bioremediation at Brownfield Sites funded by the Ontario Centres of Excellence for Earth and Environmental Technologies as part of the multiphase project entitled “Enhancing in situ Bioremediation at Brownfield Sites”. This research focused on the demonstration of nitrate-enhanced in situ bioremediation at a decommissioned service station. Petroleum hydrocarbon impacted soil and groundwater is a common occurrence at gasoline distribution facilities, where toxicological effects are known for gasoline constituents of interest such as benzene, toluene, ethylbenzene and total xylenes (BTEX). These chemicals are volatile, readily soluble, and persistent in groundwater. In particular, residual contaminants present in the saturated zone were targeted for remediation as they serve as a long term source of contamination and contribute to mobile vapour phase and dissolved phase plumes. Site investigations characterized the complex hydrogeological conditions and contaminant distribution present in order to effectively design an in situ bioremediation treatment system. The addition of nitrate as a terminal electron acceptor (TEA) to an aquifer enhances in situ biodegradation of petroleum hydrocarbons, by providing the microbes with a sustainable energy source to promote cell maintenance and growth of the microbial population. The remediation strategy involved pulsed injections of remedial solution amended with a conservative bromide (200 mg/L Br-) and reactive nitrate (90 to 265 mg/L NO3-) tracers with the purpose of providing a continuous supply of TEA available to the indigenous microbial populations. Nitrate was selected as an alternative electron acceptor over the thermodynamically favoured O2 because of typical challenges encountered using O2 in bioremediation applications in addition to the existing anaerobic environment. In situ anaerobic degradation of BTEX compound using TEA amendments has been well documented; however benzene is often recalcitrant under denitrification conditions. The results of the Br- tracer breakthrough curves indicate that different preferential flow pathways were established under the transient saturated conditions present at the Site, although the behaviour of the injected remedial slug was generally consistent between the different units and the test solution was ultimately delivered to the target zone. The delivery of the remedial test solution was greatly influenced by the hydrogeological conditions present at the time of injection. The injectate was preferentially transported in the high permeability zone of sandy gravel aquifer Unit 3 under high saturated condition and background hydraulic gradients. However the seasonal decline in groundwater levels and hydraulic gradients resulted in the lower portion of Unit 4 comprised of higher permeable materials being able to transmit the test solution more effectively. Given the variable hydrogeological conditions present at the Site influenced by seasonal effects, the delivery of the remedial solution to target zones containing petroleum hydrocarbons at residual saturation is more effective under reduced saturated conditions. The delivery of TEA amended water to enhance the in situ biodegradation of petroleum contaminants is more effective when the treatment water has an increased residence time in the target remedial zone, attributed to low gradients and groundwater transport velocities at the Site. Longer residence periods enable the indigenous microbes to have increased contact time with the TEA which will be preferentially utilized to degrade the contaminants.   A reducing zone enriched with TEA in the anaerobic aquifer was established following consecutive injections of remedial test solution. A cumulative mass of 4 kg of NO3- was added to the target aquifer during the course of the remedial injections. Evidence demonstrating NO3- utilized as a terminal electron acceptor in the bioremediation of the petroleum-contaminated aquifer include: laboratory microcosm study confirming local indigenous microbial population’s ability to degrade hydrocarbons using NO3- as the TEA in addition to observed decrease in NO3- relative to a conservative Br- tracer and generation of nitrite, an intermediate product in denitrification in the pilot-scale operation. Contaminant mass removal likely occurred as Br- tracer evidence indicates that NO3- was utilized in the study area based on the inference of denitrification rates. Post-injection groundwater sampling indicate declining concentrations of toluene, however long term monitoring is recommended in order to evaluate the success of the remediation activity and assess the potential for rebound. Post-injection soil core results are unable to demonstrate the reduction in individual toluene, let alone BTEXTMB hydrocarbon levels, as a result of insufficient quantities of nitrate delivered to the target zone relative to the significant but heterogeneously distributed residual mass in the subsurface.
10

Avaliação do uso do laser e processos fotodinâmicos na estimulação e crescimento celular de osteoblastos. Avaliação fotofísica e fotobiológica na presença e ausência de fármacos fotossensíveis / Evaluation of the use of laser and photodynamic processes in cell growth and stimulation of osteoblasts. Evaluation photophysical and photobiology in the presence and absence of drugs designed

Daniela Cervelle Zancanela 26 May 2009 (has links)
O laser é uma fonte de radiação não ionizante altamente concentrada que em contato com diferentes tecidos resulta, de acordo com o tipo de laser, em efeitos térmicos, fotoquímicos e não lineares. Atualmente, o laser tem sido rotineiramente empregado em diversas áreas da ciência, assim como na Medicina e Odontologia. Os tratamentos com utilização de radiação a laser de baixa intensidade na odontologia são de grande interesse para as áreas de cirurgia buco-maxilo-facial e implantodontia sendo usado para a estimulação do processo de osteogênese. Um novo tratamento promissor envolve o processo fotodinâmico e emprega a combinação de dois agentes terapêuticos: um fármaco fotossensível e uma baixa dosagem de luz visível que combinados em presença de oxigênio provocam a bioestimulação celular. É um método eficiente, não-invasivo. Avaliar a utilização do fármaco fotossensível derivado das ftalocianinas com a ftalocianina de cloro-alumínio para o uso no tratamento para estimulação da osteogênese é o objetivo deste trabalho, será avaliado também a potencialidade terapêutica do processo. Na tentativa de se obter melhores resultados com esses fármacos, tem surgido nos últimos anos um interesse muito grande no desenvolvimento de formulações nanoestruturadas, dentro de uma linha altamente emergente de pesquisa a Nanobiotecnologia. Neste contexto, surge dentre os vários sistemas de veiculação disponíveis, as nanoemulsões, que permitem solubilizar fármacos hidrofóbicos em água, mantendo suas características físico-químicas. / The laser is a source of non ionizing radiation highly concentrated and coherent that in contact with different tissues induce thermal, photochemical and non-linear effects according to the type of the laser. Currently, the laser has been used routinely in many areas of science, as well as in medicine and dentistry. The treatments using laser radiation of low intensity in dentistry are of great interest specially in the areas of surgery bucco-maxillo-facial and dental implants and its being used to stimulate the process of osteogenesis. A promising new treatment in dentistry area involves the photodynamic process and employs a combination of two therapeutic agents: a photosensitizers drug and a low dose of visible light that combined in the presence of oxygen could induce cellular biostimulation. It is an efficient non-invasive method. Evaluate the use of the drug derived system to administrate photosensitizers as phthalocyanine derivatives chlorine-aluminum specifically for the use in treatment and stimulation of the osteogenesis is the main objective of this work. It will be also evaluated the therapeutic potential of the process. In an attempt to obtain better biocompatibility of these drugs it has developed in recent years an additional interest in the development of nanostructured formulations, focused in a highly emerging line of research the Nanobiotechnology. The nanoemulsion formulation was selected to this work. It was showed that the hydrophobic drugs choose for this work maintaining its photophysical and chemical characteristics in this medium applicable to biological tissue.

Page generated in 0.1266 seconds