• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phytoalexins from crucifers : structures, syntheses and biosyntheses

Owiti, Denis Paskal Okinyo 18 March 2008
The search for antifungal secondary metabolites from cruciferous plants exhibiting resistance to pathogenic fungi led to the investigation of <i>Eruca sativa </i>(rocket). Chemical analysis of extracts showed arvelexin (51) as the only inducible component. Bioassay guided isolation (FCC, PTLC) and characterization (NMR, MS) led to the identification of two phytoanticipins, 4-methylthiobutyl isothiocyanate (166) and bis(4-isothiocyanatobutyl)disulfide (167). Compounds 166 and 167 inhibited the germination of spores of <i>Cladosporium cucumerinum</i> in TLC biodetection assays.<p>Next, isotopically labeled compounds containing 2H and 34S at specific sites were synthesized for use in studying of the biosynthetic pathway of crucifer phytoalexins and indolyl glucosinolates. Among the synthesized precursors, [4',5',6',7'-2H4]indolyl-3-[34S]acetothiohydroxamic acid (174a), the first sulfur-34 containing indolyl derivative was synthesized. In addition, non-isotopically labeled compounds (containing 1-methyl, 1-boc and 1-acetyl groups), that is, substrates used for precursor-directed biosynthesis, were also prepared.<p>With the precursors in hand, the biosynthetic pathway(s) and biogenetic relationship between phytoalexins was investigated using the tuberous crucifers, <i>Brassica napus </i> L. ssp rapifera (rutabaga) and <i>B. rapa </i> (turnip), and detached leaves of <i>Erucastrum gallicum </i> (dog mustard). The biosynthetic relationship between indolyl glucosinolates and phytoalexins was investigated in rutabaga and turnip. The indolyl moiety of the phytoalexins cyclobrassinin (28), rutalexin (33), spirobrassinin (34), brassicanate A (43), and rapalexin A (53), as well as indolyl glucosinolates glucobrassicin (70), 4-methoxyglucobrassicin (156), and neoglucobrassicin (199) was confirmed to derive from L-tryptophan (78). The 1-methoxy-containing phytoalexins, erucalexin (38) and 1-methoxyspirobrassinin (35) were shown to derive from indolyl-3-acetaldoxime (112) through 1-methoxyindolyl-3-acetaldoxime (116). The 1-methoxy substituent of neoglucobrassicin was also shown to derive from 1-methoxyindolyl-3-acetaldoxime (116).<p>The incorporation of indolyl-3-acetothiohydroxamic acid (174) into the phytoalexins cyclobrassinin, rutalexin, brassicanate A, rapalexin A, and spirobrassinin, and into the glucosinolate glucobrassicin is reported for the first time. On the other hand, incorporation of 174 into 4-methoxyglucobrassicin and neoglucobrassicin was not detected under current experimental conditions. Cyclobrassinin was incorporated into spirobrassinin among the NH-containing phytoalexins, whereas sinalbin B (31) [biosynthesized from 1-methoxybrassinin (18)] was incorporated into erucalexin and 1-methoxyspirobrassinin. The efficient metabolism of [SC2H3]brassicanal A into [SC2H3]brassicanate A suggested a biogenetic relationship between these two phytoalexins, whereas absence of incorporation of indolyl-3-acetonitrile (49) into rutabaga phytoalexins or indolyl glucosinolates indicated that 49 is not a precursor of these secondary metabolites under the current experimental conditions.<p>The rutabaga and turnip tubers separately metabolized 1-methylindolyl-3-acetaldoxime (170) and 1-methylindolyl-3-acetothiohydroxamic acid (178) into 1-methylglucobrassicin (201); however, no 1-methyl-containing phytoalexins were detected in the extracts. Rutabaga tissues metabolized 1-(tert-butoxycarbonyl)indolyl-3-methylisothiocyanate (180) into 1-(tert-butoxycarbonyl)brassinin (181) and 1-(tert-butoxycarbonyl)spirobrassinin (196), whereas 1-acetylbrassinin (184) was the only detectable metabolic product of 1-acetylindolyl-3-methylisothiocyanate (183) in both rutabaga and turnip root tissues.<p>In conclusion, indolyl-3-acetothiohydroxamic acid (174) seems to be the branching point between brassinin and glucobrassicin. The biosynthetic pathway of NH-containing crucifer phytoalexins was mapped and follows the sequence L-tryptophan, indolyl-3-acetaldoxime, indolyl-3-acetothiohydroxamic acid, brassinin (possibly through indolyl-3-methylisothiocyanate), and other phytoalexins. The biosynthetic pathway of 1-methoxy-containing phytoalexins follows a similar sequence through 1-methoxyindolyl-3-acetaldoxime (biosynthesized from indolyl-3-acetaldoxime).
2

Phytoalexins from crucifers : structures, syntheses and biosyntheses

Owiti, Denis Paskal Okinyo 18 March 2008 (has links)
The search for antifungal secondary metabolites from cruciferous plants exhibiting resistance to pathogenic fungi led to the investigation of <i>Eruca sativa </i>(rocket). Chemical analysis of extracts showed arvelexin (51) as the only inducible component. Bioassay guided isolation (FCC, PTLC) and characterization (NMR, MS) led to the identification of two phytoanticipins, 4-methylthiobutyl isothiocyanate (166) and bis(4-isothiocyanatobutyl)disulfide (167). Compounds 166 and 167 inhibited the germination of spores of <i>Cladosporium cucumerinum</i> in TLC biodetection assays.<p>Next, isotopically labeled compounds containing 2H and 34S at specific sites were synthesized for use in studying of the biosynthetic pathway of crucifer phytoalexins and indolyl glucosinolates. Among the synthesized precursors, [4',5',6',7'-2H4]indolyl-3-[34S]acetothiohydroxamic acid (174a), the first sulfur-34 containing indolyl derivative was synthesized. In addition, non-isotopically labeled compounds (containing 1-methyl, 1-boc and 1-acetyl groups), that is, substrates used for precursor-directed biosynthesis, were also prepared.<p>With the precursors in hand, the biosynthetic pathway(s) and biogenetic relationship between phytoalexins was investigated using the tuberous crucifers, <i>Brassica napus </i> L. ssp rapifera (rutabaga) and <i>B. rapa </i> (turnip), and detached leaves of <i>Erucastrum gallicum </i> (dog mustard). The biosynthetic relationship between indolyl glucosinolates and phytoalexins was investigated in rutabaga and turnip. The indolyl moiety of the phytoalexins cyclobrassinin (28), rutalexin (33), spirobrassinin (34), brassicanate A (43), and rapalexin A (53), as well as indolyl glucosinolates glucobrassicin (70), 4-methoxyglucobrassicin (156), and neoglucobrassicin (199) was confirmed to derive from L-tryptophan (78). The 1-methoxy-containing phytoalexins, erucalexin (38) and 1-methoxyspirobrassinin (35) were shown to derive from indolyl-3-acetaldoxime (112) through 1-methoxyindolyl-3-acetaldoxime (116). The 1-methoxy substituent of neoglucobrassicin was also shown to derive from 1-methoxyindolyl-3-acetaldoxime (116).<p>The incorporation of indolyl-3-acetothiohydroxamic acid (174) into the phytoalexins cyclobrassinin, rutalexin, brassicanate A, rapalexin A, and spirobrassinin, and into the glucosinolate glucobrassicin is reported for the first time. On the other hand, incorporation of 174 into 4-methoxyglucobrassicin and neoglucobrassicin was not detected under current experimental conditions. Cyclobrassinin was incorporated into spirobrassinin among the NH-containing phytoalexins, whereas sinalbin B (31) [biosynthesized from 1-methoxybrassinin (18)] was incorporated into erucalexin and 1-methoxyspirobrassinin. The efficient metabolism of [SC2H3]brassicanal A into [SC2H3]brassicanate A suggested a biogenetic relationship between these two phytoalexins, whereas absence of incorporation of indolyl-3-acetonitrile (49) into rutabaga phytoalexins or indolyl glucosinolates indicated that 49 is not a precursor of these secondary metabolites under the current experimental conditions.<p>The rutabaga and turnip tubers separately metabolized 1-methylindolyl-3-acetaldoxime (170) and 1-methylindolyl-3-acetothiohydroxamic acid (178) into 1-methylglucobrassicin (201); however, no 1-methyl-containing phytoalexins were detected in the extracts. Rutabaga tissues metabolized 1-(tert-butoxycarbonyl)indolyl-3-methylisothiocyanate (180) into 1-(tert-butoxycarbonyl)brassinin (181) and 1-(tert-butoxycarbonyl)spirobrassinin (196), whereas 1-acetylbrassinin (184) was the only detectable metabolic product of 1-acetylindolyl-3-methylisothiocyanate (183) in both rutabaga and turnip root tissues.<p>In conclusion, indolyl-3-acetothiohydroxamic acid (174) seems to be the branching point between brassinin and glucobrassicin. The biosynthetic pathway of NH-containing crucifer phytoalexins was mapped and follows the sequence L-tryptophan, indolyl-3-acetaldoxime, indolyl-3-acetothiohydroxamic acid, brassinin (possibly through indolyl-3-methylisothiocyanate), and other phytoalexins. The biosynthetic pathway of 1-methoxy-containing phytoalexins follows a similar sequence through 1-methoxyindolyl-3-acetaldoxime (biosynthesized from indolyl-3-acetaldoxime).
3

Etude de la voie de biosynthèse des dithiolopyrrolones chez saccharotrix algeriensis NRRL B-24137 : approche génétique et enzymologique / Study of the biosynthesis pathway of dithiolopyrrolones in Saccharothrix algeriensis NRRL B-24137 : Genetic and enzymological approaches

Saker, Safwan 12 December 2013 (has links)
Du fait de l’apparition de microorganismes pathogènes ayant une résistance aux antibiotiques actuels, la recherche de nouvelles molécules bioactives possédant une application médicale est devenue une préoccupation mondiale. Saccharothrix algeriensis, une bactérie filamenteuse de l’ordre des actinomycètes a montré une étonnante capacité à produire des molécules bioactives qui appartiennent aux dithiolopyrrolones, ayant de remarquables propriétés à la fois antibiotiques et anticancéreuses. Lors de ce projet de thèse, l’identification du cluster de gènes de la voie de biosynthèse des dithiolopyrrolones chez Sa. algeriensis est envisagée. Suite au séquençage du génome de Sa. algeriensis, une approche génomique ou « genome mining » est suivie, cette approche a révélé un cluster thi potentiellement responsable de la voie de biosynthèse des dithiolopyrrolones chez Sa. algeriensis. Ce cluster contient 12 gènes, dont 8 gènes de biosynthèse, 3 gènes régulateurs et un gène transporteur. Les analyses in silico des gènes ont montré que la cystéine est le substrat d’une NRPS. Les analyses transcriptionelles ont montré que les trois gènes clés codent pour une NRPS, une thiorédoxine et une thioestérase qui pourraient être impliquées dans la biosynthèse des dithiolopyrrolones. Deux gènes actA et actB codant pour des acyltransférases putatives ont été identifiés. Les analyses transcriptionelles suggèrent qu’actA et actB pourraient être responsables de l’acylation de la pyrrothine. Finalement, la caractérisation de deux activités enzymatiques, acétyltransférase et benzoyltransférase, présentes dans l’extrait brut de Sa. algeriensis, ont permis de déterminer les paramètres optimaux (pH et T °C) de la réaction enzymatique. Enfin, les paramètres cinétiques de ces activités ont des valeurs complètements différentes, ce qui confirme la présence d’au moins deux activités différentes chez Sa. algeriensis. / Due to the emergence in the last decades of new and old infectious diseases to existing antibiotics, the research for new bioactive molecules which possess medical applications become a global occupation. Saccharothrix algeriensis, filamentous bacteria of actinomycetes order showed a surprising ability to produce bioactive molecules belongs to dithiolopyrrolones with remarkable properties of both antibiotics and anticancer. In this thesis, the identification of dithiolopyrrolones biosynthetic gene cluster in Sa. algeriensis was investigated. Through S. algeriensis genome sequencing, a genomics approach "genome mining" was followed, this approach has revealed a potentially thi cluster responsible for dithiolopyrrolones biosynthesis pathway in Sa algeriensis. This cluster contains 12 genes, including 8 biosynthesis genes, three regulatory genes and one transporter gene. The in silico analysis of this cluster showed that the cysteine is the substrate of the NRPS. The transcriptional analyzes showed that the three key genes which encode for NRPS, thioredoxin and thioesterase could be involved in dithiolopyrrolone biosyntheses. Two genes, actA and actB, encode for two putative acyltransferases were identified, the transcriptional analyzes suggests that these genes may be responsible for the acylation of pyrrothine core. The characterizations of two activities, acetyltransferase and benzoyltransferase, in the crude extract of Sa. algeriensis led the determination of the optimal parameters (pH and T °C) to detect these activities. Moreover, the effect of temperature and pH on these activities was determined. Finally, the kinetic parameters of these activities showed different values, which confirm the presence of, at least, two activities in Sa. algeriensis.
4

Estudo do metabolismo dos lipÃdeos de membranas do cloroplasto e dos genes associados em Vigna unguiculata (L.) Walp. em condiÃÃo de dÃficit hÃdrico e reidrataÃÃo subseqÃente / Study of chloroplast membrane lipids metabolism and the associated genes in Vigna unguiculata (L.) Walp. under drought and recovery after rehydration

Maria Lucia Torres Franklin 19 December 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / As membranas biolÃgicas sÃo alvos preferenciais dos efeitos deletÃrios do estresse hÃdrico, induzidos por aÃÃo de enzimas hidrolÃticas e espÃcies reativas do oxigÃnio (ERO), ambas estimuladas durante o estresse. A biossÃntese dos lipÃdeos dos cloroplastos pode ser importante para a tolerÃncia ao estresse hÃdrico e para a recuperaÃÃo apÃs reidrataÃÃo. Nesse trabalho nos estudamos o metabolismo dos cloroplastos, monogalactosil-diacilglicerol (MGDG), digalactosil-diacilglicerol (DGDG), sulfoquinovosil-diacilglicerol (SQDG), phosphatidil-glicerol (PG), no Ãmbito do dÃficit hÃdrico e da reidrataÃÃo apÃs o fim do estresse. Com este intuito, nos medimos o teor dos lipÃdeos da folhas, acompanhamos a incorporaÃÃo do precursor 14C-acetato nos lipÃdeos e analisamos a expressÃo dos genes codificadores das enzimas de sÃntese chave dos lipÃdeos (MGD1, MGD2, DGD1, DGD2, SQD2 e PGP1) durante o estresse hÃdrico e apÃs a reidrataÃÃo. Visando de uma melhor compreensÃo da relaÃÃo entre o metabolismo destes lipÃdeos e a tolerÃncia a seca, nos trabalhamos com duas cultivares de Vigna unguiculata L. Walp, uma tolerante (cv. EPACE) e outra sensÃvel (cv. 1183) a seca. Por meio de varredura diferencial de um biblioteca de cDNA de V.unguiculata, foram obtidas as seqÃÃncias completas dos cDNA dos genes VuMGD1, VuMGD2, VuDGD1, VuDGD2, VuSQD2 e VuPGP1. Os resultados mostram que em condiÃÃes de estresse hÃdrico a cultivar tolerante, alÃm de preservar seu teor de lipÃdeos durante a seca, à igualmente capaz de estimular a biossÃntese do DGDG aumentando significativamente a relaÃÃo DGDG:MGDG de suas membranas. NÃs sugerimos que o DGDG acumulado em condiÃÃo de seca à transportado para as membranas externas ao cloroplasto e que isso contribui para a tolerÃncia à seca. Os efeitos da desidrataÃÃo celular sobre as membranas tÃm conseqÃÃncias diretas sobre a capacidade das plantas a se recuperarem apÃs reidrataÃÃo. 48 horas apÃs a rega, a cv. sensÃvel 1183 nÃo à capaz de se recuperar em termos de teor de galactolipÃdeos e incorporaÃÃo do precursor. Na cv. tolerante, no entanto, o teor de DGDG permanece elevado, mesmo apÃs a reidrataÃÃo. Em conclusÃo, nossos resultados sugerem a importÃncia dos lipÃdeos membranares na tolerÃncia/sensibilidade das plantas ao dÃficit hÃdrico, em particular o balanÃo entre as classes lipÃdicas de propriedades fÃsico-quÃmicas diferentes (SQDG versus PG e DGDG versus MGDG) que poderiam afetar a estrutura e o funcionamento das membranas. / Membranes are main targets of degradation by reactive oxygen species and hydrolytic activities induced by drought. Chloroplasts lipid biosynthesis, especially galactolipids monogalactosyl-diacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG) are important for plant tolerance to water deficit and for recovery after rehydration. In this thesis, we studied the metabolism of the chloroplast membrane lipids, MGDG, DGDG, sulphoquinovosyl-diacylglycerol (SQDG), phosphatidyl-glycerol (PG) under drought and during recovery from drought. Aiming this, we measured leaf lipids content, followed 14C-acÃtate incorporation and expression of genes coding for chloroplast membrane lipid synthases (MGD1, MGD2, DGD1, DGD2, SQD2 and PGP1) during drought and recovery. In order to better understand the relationship between drought tolerance and lipid metabolism, two cultivars of Vigna unguiculata L. Walp, one drought tolerant (cv. EPACE) the other drought susceptible (cv. 1183) were compared. The cDNA complete sequences for VuMGD1, VuMGD2, VuDGD1, VuDGD2, VuSQD2 and VuPGP1 were obtained from screening of a V.unguiculata cDNA library. The results showed that under water stress conditions, the tolerant cultivar, besides its ability to preserve its lipids pool despites drought, is able to strongly stimulate the DGDG biosynthesis, increasing the DGDG:MGDG ratio in its membranes. We suggest that DGDG accumulated under drought condition, when phosphate is deficient, is exported for extrachloroplastic membranes, and thus contributes to plant drought tolerance. Effects of loss of water on cell membranes have direct consequences on plant capacity to recover from stress. 48 hours after rewatering, the susceptible cv. 1183 was not able to fully recover from a moderate stress in terms of leaf galactolipid content and acetate incorporation into MGDG. In EPACE-1, MGDG leaf content remained unchanged after rehydration and DGDG remained higher than in the control plants. In conclusion, our results highlight the importance of membrane lipids in plant adaptation to water deficit and in their capacity to recover from stress. Of particular importance is the balance between lipid classes with various physico-chemical properties (SQDG versus PG, DGDG versus MGDG), since they most likely have a profound influence on membrane structure and function.

Page generated in 0.0849 seconds