• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Synthesis and Reactivity of Bis(silyl)acetylenes

Albanesi, Todd E. (Todd Edward) 05 1900 (has links)
Six bis(silyl)acetylenes with the following varied silicon substituents were prepared: I (Me, Me); II (H, H); III (Cl, H); IV (Cl, Cl); V (OMe, H); VI (OMe, OMe). While I and II may be prepared by the reaction of dilithio- or bis(bromomagnesium)-acetylide with appropriate chlorosilane, similar reactions designed to give III - VI give oligomers, YMe_2Si(C≡C-SiMe_2)_nY, VII, Y = Cl, OMe, as the major products indicating that the acetylenic functionality on silicon activates the chlorosilane toward nucleophilic substitution. Compounds III and IV were prepared by free radical chlorination of II. Methanolysis of III and IV gave quantitative yields of V and VI, respectively. In the presence of mineral acid, VI readily cyclized to give high yields of the cyclic siloxane octamethyl-4,9-dioxa-3,5,8,10-tetrasila-cyclodeca-1,6-diyne, VIII, and the analogous triyne, IX. It was determined that V and VI could be prepared directly from II in high yield by methanolysis with palladium catalyst. Vaska's complex also accomplished the conversion. I attempted to prepare bis(ethoxydimethylsilyl)acetylene by using of Wilkinson 's catalyst for hydrosilylation with acetaldehyde. The principal product of this reaction was 1-(dimethylsilyl)-3,5,5-trimethyl-4-oxa-3-silacyclopent-1-ene, XI.

Page generated in 0.0699 seconds