1 |
A Mini-invasive Low-power Measurement System of Bladder Pressure and A Self-disable Sense Technique for Content Addressable MemoryWu, Jun-Han 15 July 2008 (has links)
The first topic of the thesis reveals a mini-invasive low-power measurement system for bladder pressure measurement. Not only can the mode of measurement be selected, the input range and amplification of instrumentation amplifier (IA) is also adjustable. The proposed system can measure the pressure in a bladder in a continuous mode. It also can monitor the pressure in a long-term mode with an automatic sleeping mechanism for power saving. The signal generated by the pressure sensor is sensed by an IA, which is then fed into the following ADC (analog-to-digital converter). The input range of the IA must be adjustable to keep the required linearity. The pressure range of the proposed system is found out to be 5 Psi with the maximum resolution of 1 cm-H2O, which covers the range of all of the known unusual bladder syndromes.
The second topic is a self-disable sense technique for content addressable memory (CAM). The differential match-line sense circuit can be self-disabled to choke the charge current fed into the match line right after the comparison result is generated. Besides, the 13-T CAM cell provides the complete write, read, and comparison functions to refresh the data bit and verify its correctness before searching. The average energy consumption of the searching process is 1.872 fJ/bit/search according to thorough simulations.
|
2 |
Design and Fabrication of Bulk Micromachined Piezoresistive Pressure SensorLin, Yu-Ren 31 August 2009 (has links)
Utilizing the bulk and surface micromachining technologies, this thesis designed and fabricated a piezoresistive pressure microsensor for developing an in-vivo and real-time biomedical detection microsystem to monitor the uric pressure in patients¡¦ bladder.
In this study, the main processing steps include the implantation of a moderate boron ion concentration into the N-epitaxial silicon layer to form the piezoresistors, anisotropic etching the backside silicon substrate to create a cavity by 30% KOH solution in 80¢XC temperature, and anodic bonding of the silicon based pressure microsensor and the hole-drilled glass sustain. To obtain the optimum design specification of the piezoresistive pressure microsensor, this study compared the characterization of the four types of devices with three different pressure sensing area (As) and two different length/width ratios (L/W) of the N-epitaxial piezoresistors.
Based on the measurement results, the highest sensitivity (0.0076mV/(V*kgf/cm2) can be achieved as the As and the L/W ratio are equal to 1050 ¡Ñ 1050 £gm2 and 90/9 £gm/£gm, respectively. Such sensitivity is suitable for the application of bladder pressure detection microsystem. A very high sensing linearity (99.6%) can also be demonstrated in this research and this value approach to that of the commercial pressure sensor. On the other hand, through cooperation with another laboratory, this work has established a prototype of the uric pressure detecting microsystem by assembled with the piezoresistive pressure microsensor, a control ASIC and a radio-frequency (RF) module.
|
3 |
Wireless, Implantable Microsystem for Chronic Bladder Pressure MonitoringMajerus, Steve J. 11 June 2014 (has links)
No description available.
|
Page generated in 0.0731 seconds