• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Small-scale Experiments for Blast-induced Damage: Exploring crack propagation through Digital Image Correlation

Rodriguez San Miguel, Carlota January 2024 (has links)
Blasting plays a crucial role in several engineering applications, from mining and tunneling to demolition projects. One of the remaining challenges of this process is that it can significantly affect the integrity of the rock mass by inducing damage in the form of cracks. Broadening the understanding of the behavior of the blast-induced cracks is essential for predicting the damage. One way of investigating this issue is through small-scale blasting experiments focused on crack propagation behavior. Controlled blasting experiments were conducted on rock-like cylindrical samples charged with Pentaerythritol tetranitrate (PETN) cords. Different blast designs were tested and a method for integrating a Digital Image Correlation (DIC) technique in the analysis was developed. The DIC system was composed of an Ultra High-Speed Camera (UHSC), a light system, and a data acquisition system. The setup was tested in a laboratory and underwent different calibrations before implementing it in the mine, where using explosives during the tests is allowed. The UHSC captured the blasting process regarding crack propagation. To analyze the development of the cracks, DIC technique was employed and results in terms of displacement versus time were measured from the sample surface. The described experiments integrate a novel analysis approach to the results from the DIC technique and propose a way of interpreting the outcomes regarding crack development in terms of velocity. While developing the methodology, the pre-processing of the data (UHSC images) was shown to enhance the DIC analysis and affect the further post-processing of the results. The presented methodology proposes a human-independent procedure of analysis that can help to differentiate the displacement of the crack along its time. Nevertheless, a visual analysis of the results was performed to complement the results and try to broaden the understanding of the crack development process. The DIC results indicated a nonconstant crack propagation velocity while the development patterns were interpreted to match previous literature. The experimental studies confirmed the radial propagation behavior surrounding the blasthole in the single borehole test, while the two borehole configurations show to influence the crack propagation direction and interconnection. This work describes small-scale experiments that provide meaningful insights in crack propagation and how the different blast design parameters can affect their development. The findings of this study could be useful as an input of a predictive tool to assess blast-induced crack initiation and development. / BeFo (Rock Engineering Research Foundation, Sweden) project number 427, “Experimental and Numerical modeling of blast-induced damage around rock tunnel using LS-DYNA”
12

STUDY OF BLAST-INDUCED MILD TRAUMATIC BRAIN INJURY: LABORATORY SIMULATION OF BLAST SHOCK WAVES

Awad, Neveen January 2014 (has links)
Blast-induced mild traumatic brain injury (BImTBI) is one of the most common causes of traumatic brain injuries. BImTBI mechanisms are not well identified, as most previous blast-related studies were focused on the visible and fatal injuries. BImTBI is a hidden lesion and long-term escalation of related complications is considered a serious health care challenging due to lack of accurate data required for early diagnosis and intervention. The experimental studies presented in this thesis were performed to investigate aspects of blast shock wave mechanisms that might lead to mild traumatic brain injury. A compressed air-driven shock tube was designed and validated using finite element analysis (FEA) and experimental investigation. Two metal diaphragm types (steel and brass) with three thicknesses (0.127, 0.76, and 0.025mm) were utilized in the shock tube calibration experiment, as a new approach to generate shock wave. The consistency of generated shock waves was confirmed using a statistical assessment of the results by evaluating the shock waves parameters. The analysis results showed that the 0.127mm steel diaphragm induces a reliable shock waveform in the range of BImTB investigations. Evaluation of the shock wave impacts on the brain was examined using two sets of experiments. The first set was conducted using a gel brain model while the second set was performed using a physical head occupied with a gel brain model and supported by a neck model. The gel brain model in both the experimental studies was generated using silicone gel (Sylgard-527). The effects of tested models locations and orientations with respect to the shock tube exit were investigated by measuring the generated pressure wave within the brain model and acceleration. The results revealed that the pressure waveform and acceleration outcomes were greatly affected by the tested model orientations and locations in relation to the path of shock wave propagation. / Thesis / Doctor of Philosophy (PhD)
13

Numerical Modeling of Blast-Induced Liquefaction

Lee, Wayne Yeung 13 July 2006 (has links) (PDF)
A research study has been conducted to simulate liquefaction in saturated sandy soil induced by nearby controlled blasts. The purpose of the study is to help quantify soil characteristics under multiple and consecutive high-magnitude shock environments similar to those produced by large earthquakes. The simulation procedure involved the modeling of a three-dimensional half-space soil region with pre-defined, embedded, and strategically located explosive charges to be detonated at specific time intervals. LS-DYNA, a commercially available finite element hydrocode, was the solver used to simulate the event. A new geo-material model developed under the direction of the U.S. Federal Highway Administration was applied to evaluate the liquefaction potential of saturated sandy soil subjected to sequential blast environments. Additional procedural enhancements were integrated into the analysis process to represent volumetric effects of the saturated soil's transition from solid to liquid during the liquefaction process. Explosive charge detonation and pressure development characteristics were modeled using proven and accepted modeling techniques. As explosive charges were detonated in a pre-defined order, development of pore water pressure, volumetric (compressive) strains, shear strains, and particle accelerations were carefully computed and monitored using custom developed MathCad and C/C++ routines. Results of the study were compared against blast-test data gathered at the Fraser River Delta region of Vancouver, British Columbia in May of 2005 to validate and verify the modeling procedure's ability to simulate and predict blast-induced liquefaction events. Reasonable correlations between predicted and measured data were observed from the study.
14

Numerical study on vibration isolation by wave barrier and protection of existing tunnel under explosions / Étude numérique de l'isolation des vibrations par barrière d'ondes et de la protection du tunnel existant sous explosions

Qiu, Bo 23 January 2014 (has links)
Les vibrations du sol induites par les activités humaines telles que, les activités industrielles, la circulation des camions et voitures, les explosions dues aux constructions ou l’exploitation de la déconstruction, atteignent souvent la limite de gêne pour les usagers et parfois la limite de nocivité. Dans les régions urbaines à forte densité et pour les bâtiments abritant des équipements sensibles, les vibrations du sol doivent être strictement contrôlées. Jusqu'à présent, de nombreuses méthodes de réduction de vibration ont été proposées, dont l'une est l'installation d'une barrière d'ondes entre les sources et les structures à protéger. Au cours des dernières décennies, l'efficacité de l'isolation des vibrations à l’aide de barrière d'ondes a été étudiée. Toutefois, il y a peu de travaux consacrés à l’influence mutuelle des paramètres du système sol-barrière sur l'efficacité de l'isolation de la barrière d'ondes, et l'optimisation de la barrière d'onde est également rare. D'autre part, l'influence des vibrations du sol, générées par les explosions durant la construction d’un nouveau tunnel, sur un tunnel avoisinant, interpelle en raison des dommages qui peuvent être produits. Jusqu'à présent, il existe peu de mesures d'atténuation globale proposées par les chercheurs et les ingénieurs concernant la réduction de vibrations dans les tunnels lors des explosions. Pour répondre à ces insuffisances, cette thèse porte sur l'étude de l'influence des différents paramètres du système sol-barrière et qualifie l'efficacité de l'isolation de la barrière d'ondes. Les paramètres clés sont identifiés, leur rôle respectif quantifié. Plus important encore, une méthode de conception d'optimisation est mise au point, dans le but de proposer la barrière qui est capable de réduire au minimum la vibration du sol en site protégé. Enfin, le comportement dynamique du tunnel existant sous les sollicitations des explosions proches est examiné. Les paramètres qui influent considérablement sur la réponse du tunnel sont mis en évidence. Deux mesures d'atténuation pratiques, concernant l'installation d'une couche de protection le long de la paroi du tunnel d’une part et des explosions à retardement (plutôt que des explosions instantanées) d’autre part, sont présentées en détails. Les recherches menées dans le cadre de cette thèse sont en mesure de fournir des éléments pour la conception optimisée de la barrière d'ondes afin de réduire les vibrations du sol en site protégé et pour la conception de mesures d'atténuation concrètes afin de protéger un tunnel existant par des explosions à proximité. / Ground vibration induced by human activity such as industrial activities, car or truck traffic, or pilling and blasting in construction or deconstruction operation, generally reaches the troublesome limit for men and occasionally attains the harmful limit. In the densely populated urban regions and buildings housing sensitive equipments, ground vibration has to be strictly controlled. Up to now, many vibration reduction methods have been proposed, one of which is the installation of wave barrier between the dynamic sources and the protected structures. Over the past decades, the vibration isolation effectiveness of wave barrier has been extensively studied. However, to the best of the writer’s knowledge, there is little study about the mutual influence of the parameters of soil-barrier system on the barrier screening efficiency, and the optimization design for wave barrier is rare as well. On the other hand, the influence of ground vibration generated by explosions on the nearby existing tunnel has attracted more and more attention due to the recent damage or even failure of tunnels. Up to now, there are few mitigation measures comprehensively proposed by researchers and engineers for the tunnel vibration reduction during explosions. To overcome those drawbacks, this dissertation focuses on the investigation of the influence of various parameters of soil-barrier system on the barrier isolation efficiency. Key parameters are identified. More importantly, an optimization design method is developed, aiming to find out the desirable barrier that is able to minimize the ground vibration in protected site. Besides, the dynamic behavior of existing tunnel under nearby explosions is examined. Parameters that significantly affect the response of tunnel are pointed out. Furthermore, two practical mitigation measures: the installation of a protective layer along the tunnel lining and time-delayed explosions (rather than instantaneous explosions), are presented with details. The research in this dissertation is able to provide a good reference for the optimization design of wave barrier in reducing ground vibration in protected site and for the design of practical mitigation measures to protect existing tunnel from nearby explosions.

Page generated in 0.0327 seconds