1 |
Analysis of Order Strategies for Alternating Algorithms in OptimizationNtiamoah, Daniel 05 June 2023 (has links)
No description available.
|
2 |
Efficient Resource Allocation In Energy Harvesting Wireless NetworksTekbiyik Ersoy, Neyre 01 December 2012 (has links) (PDF)
This thesis presents various studies on energy efficient design of wireless networks. It starts
with a survey on recent shortest path based energy efficient routing algorithms developed for
ad hoc and sensor networks, making a comprehensive classification for these algorithms. In
addition to energy efficient design, sustainable and environmentally friendly deployment of
wireless networks demands increased use of renewable energy. However, this calls for novel
design principles to efficiently utilize the variation in the availability of the energy. The thesis
continues with an investigation of state-of-the-art resource management and scheduling
algorithms developed for energy harvesting wireless sensor networks. Building on the stateof-
the-art, the main contribution of this thesis is to formulate and solve a utility maximizing
scheduling problem in a multiuser broadcast channel with an energy harvesting transmitter.
The goal is to determine the optimal power and time allocations to users between energy arrivals.
The structural properties of the problem are analyzed, and its biconvexity is proved.
A Block Coordinate Descent (BCD) based algorithm is developed to obtain the optimal solution.
Two simple and computationally scalable heuristics, PTF and ProNTO, which mimic
the characteristics of the optimal policy, are proposed. Finally, an online algorithm, PTF-On,that will bypass the need for offline knowledge about the energy harvesting statistics, is developed.
PTF-On uses a Kalman filter based energy harvesting prediction algorithm, developed
in this thesis, to predict the energy that will arrive in the future.
|
3 |
Block Coordinate Descent for Regularized Multi-convex OptimizationXu, Yangyang 16 September 2013 (has links)
This thesis considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables.
I review some of its interesting examples and propose a generalized block coordinate descent (BCD) method. The generalized BCD uses three different block-update schemes.
Based on the property of one block subproblem, one can freely choose one of the three schemes to update the corresponding block of variables. Appropriate choices of block-update schemes can often speed up the algorithm and greatly save computing time.
Under certain conditions, I show that any limit point satisfies the Nash equilibrium conditions. Furthermore, I establish its global convergence and estimate its asymptotic convergence rate by assuming a property based on the Kurdyka-{\L}ojasiewicz inequality. As a consequence, this thesis gives a global linear convergence result of cyclic block coordinate descent for strongly convex optimization. The proposed algorithms are adapted for factorizing nonnegative matrices and tensors, as well as completing them from their incomplete observations. The algorithms were tested on synthetic data, hyperspectral data, as well as image sets from the CBCL, ORL and Swimmer databases. Compared to the existing state-of-the-art algorithms, the proposed algorithms demonstrate superior performance in both speed and solution quality.
|
4 |
Studies on Optimization Methods for Nonlinear Semidefinite Programming Problems / 非線形半正定値計画問題に対する最適化手法の研究Yamakawa, Yuya 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19122号 / 情博第568号 / 新制||情||100(附属図書館) / 32073 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 太田 快人, 教授 永持 仁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
5 |
Generalized unit commitment by the radar multiplier methodBeltran Royo, César 09 July 2001 (has links)
This operations research thesis should be situated in the field of the power generation industry. The general objective of this work is to efficiently solve the Generalized Unit Commitment (GUC) problem by means of specialized software. The GUC problem generalizes the Unit Commitment (UC) problem by simultane-ously solving the associated Optimal Power Flow (OPF) problem. There are many approaches to solve the UC and OPF problems separately, but approaches to solve them jointly, i.e. to solve the GUC problem, are quite scarce. One of these GUC solving approaches is due to professors Batut and Renaud, whose methodology has been taken as a starting point for the methodology presented herein.This thesis report is structured as follows. Chapter 1 describes the state of the art of the UC and GUC problems. The formulation of the classical short-term power planning problems related to the GUC problem, namely the economic dispatching problem, the OPF problem, and the UC problem, are reviewed. Special attention is paid to the UC literature and to the traditional methods for solving the UC problem. In chapter 2 we extend the OPF model developed by professors Heredia and Nabona to obtain our GUC model. The variables used and the modelling of the thermal, hydraulic and transmission systems are introduced, as is the objective function. Chapter 3 deals with the Variable Duplication (VD) method, which is used to decompose the GUC problem as an alternative to the Classical Lagrangian Relaxation (CLR) method. Furthermore, in chapter 3 dual bounds provided by the VDmethod or by the CLR methods are theoretically compared.Throughout chapters 4, 5, and 6 our solution methodology, the Radar Multiplier (RM) method, is designed and tested. Three independent matters are studied: first, the auxiliary problem principle method, used by Batut and Renaud to treat the inseparable augmented Lagrangian, is compared with the block coordinate descent method from both theoretical and practical points of view. Second, the Radar Sub- gradient (RS) method, a new Lagrange multiplier updating method, is proposed and computationally compared with the classical subgradient method. And third, we study the local character of the optimizers computed by the Augmented Lagrangian Relaxation (ALR) method when solving the GUC problem. A heuristic to improve the local ALR optimizers is designed and tested.Chapter 7 is devoted to our computational implementation of the RM method, the MACH code. First, the design of MACH is reviewed brie y and then its performance is tested by solving real-life large-scale UC and GUC instances. Solutions computed using our VD formulation of the GUC problem are partially primal feasible since they do not necessarily fulfill the spinning reserve constraints. In chapter 8 we study how to modify this GUC formulation with the aim of obtaining full primal feasible solutions. A successful test based on a simple UC problem is reported. The conclusions, contributions of the thesis, and proposed further research can be found in chapter 9.
|
6 |
Studies on block coordinate gradient methods for nonlinear optimization problems with separable structure / 分離可能な構造をもつ非線形最適化問題に対するブロック座標勾配法の研究Hua, Xiaoqin 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19123号 / 情博第569号 / 新制||情||100(附属図書館) / 32074 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 中村 佳正, 教授 田中 利幸 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
Page generated in 0.0945 seconds