• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 29
  • 14
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 215
  • 215
  • 58
  • 54
  • 53
  • 33
  • 32
  • 30
  • 27
  • 23
  • 23
  • 23
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A Study on the Network Microdomain Structure in Block Copolymer Melts / ブロックコポリマーのネットワーク構造に関する研究

Wang, Yi-Chin 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19742号 / 工博第4197号 / 新制||工||1647(附属図書館) / 32778 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 吉崎 武尚, 教授 古賀 毅, 准教授 竹中 幹人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
82

Fabrication of Well-Defined Architectures of Ultrahigh-Molecular-Weight Polymers by Living Radical Polymerization / リビングラジカル重合により合成した超高分子量ポリマーの高次構造形成

Hsu, Shu-Yao 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19748号 / 工博第4203号 / 新制||工||1648(附属図書館) / 32784 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 辻井 敬亘, 教授 山子 茂, 教授 渡辺 宏 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
83

SINGLE CRYSTAL ENGINEERING OF AMORPHOUS-CRYSTALLINE BLOCK COPOLYMERS CRYSTALLIZATION, MORPHOLOGY AND APPLICATIONS

Chen, Yan January 2005 (has links)
No description available.
84

SELF-ASSEMBLED POLYSTYRENE-BLOCK-POLY (ETHYLENE OXIDE) (PS-b-PEO) MICELLE MORPHOLOGIES IN SOLUTION

Bhargava, Prachur 02 October 2007 (has links)
No description available.
85

Nanoscale Surface Patterning and Applications: Using Top-Down Patterning Methods to Aid Bottom-Up Fabrication

Pearson, Anthony Craig 31 August 2012 (has links) (PDF)
Bottom-up self-assembly can be used to create structures with sub-20 nm feature sizes or materials with advanced electrical properties. Here I demonstrate processes to enable such self-assembling systems including block copolymers and DNA origami, to be integrated into nanoelectronic devices. Additionally, I present a method which utilizes the high stability and electrical conductivity of graphene, which is a material formed using a bottom-up growth process, to create archival data storage devices. Specifically, I show a technique using block copolymer micelle lithography to fabricate arrays of 5 nm gold nanoparticles, which are chemically modified with a single-stranded DNA molecule and used to chemically attach DNA origami to a surface. Next, I demonstrate a method using electron beam lithography to control location of nanoparticles templated by block copolymer micelles, which can be used to enable precise position of DNA origami on a surface. To allow fabrication of conductive structures from a DNA origami template, I show a method using site-specific attachment of gold nanoparticles to and a subsequent metallization step to form continuous nanowires. Next, I demonstrate a long-term data storage method using nanoscale graphene fuses. Top-down electron beam lithography was used to pattern atomically thin sheets of graphene into nanofuses. To program the fuses, graphene is oxidized as the temperature of the fuse is raised via joule heating under a sufficiently high applied voltage. Finally, I investigate the effect of the fuse geometry and the electrical and thermal properties of the fuse material on the programming requirements of nanoscale fuses. Programming voltages and expected fuse temperatures obtained from finite element analysis simulations and a simple analytical model were compared with fuses fabricated from tellurium, a tellurium alloy, and tungsten.
86

Fabrication and Characterization of DNA Templated Electronic Nanomaterials and Their Directed Placement by Self-Assembly of Block Copolymers

Ranasinghe Weerakkodige, Dulashani Ruwanthika 01 August 2022 (has links)
Bottom-up self-assembly has the potential to fabricate nanostructures with advanced electrical features. DNA templates have been used to enable such self-assembling methods due to their versatility and compatibility with various nanomaterials. This dissertation describes research to advance several different steps of biotemplated nanofabrication, from DNA assembly to characterization. I assembled different nanomaterials including surfactant-coated Au nanorods, DNA-linked Au nanorods and Pd nanoparticles on DNA nanotubes ~10 micrometer long, and on ~400 nm long bar-shaped DNA origami templates. I optimized seeding by changing the surfactant and magnesium ion concentrations in the seeding solution. After successful seeding, I performed electroless plating on those nanostructures to fabricate continuous nanowires. Using the four-point probe technique, I performed resistivity measurements for Au nanowires on DNA nanotubes and obtained values between 9.3 x 10-6 and 1.2 x 10-3 ohm meter. Finally, I demonstrated the directed placement of DNA origami using block copolymer self-assembly. I created a gold nanodot array using block copolymer patterning and metal evaporation followed by lift-off. Then, I used different ligand groups and DNA hybridization to attach DNA origami to the nanodots. The DNA hybridization approach showed greater DNA attachment to Au nanodots than localization by electrostatic interaction. These results represent vital progress in understanding DNA-templated components, nanomaterials, and block copolymer nanolithography. The work in this dissertation shows potential for creating DNA-templated nanodevices and their placement in an ordered array in future nanoelectronics. Each of the described materials and techniques further has potential for addressing the need for increased complexity and integration for future applications.
87

Role of Strongly Interacting Additives in Tuning the Structure and Properties of Polymer Systems

Daga, Vikram Kumar 01 September 2011 (has links)
Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCP-additive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals with the incorporation of additives into photoresists for next generation extreme ultra violet (EUV) photolithography applications. The concept of hydrogen bonding between the additives and the polymeric photoresist was utilized to cause formation of a physical network that is expected to slow down the diffusion of photoacid leading to better photolithographic performance (25-30 nm resolution obtained).
88

Synthesis and Study of Hybrid Organic – Inorganic Polyhedral Oligomeric Silsesquioxanes (poss) Based Polymers

Gadodia, Gunjan A, 01 September 2009 (has links)
Hybrid organic-inorganic materials represent a new class of materials having scientific and technological potential. In this thesis, Polyhedral Oligomeric Silsesquioxanes (POSS) are used as an inorganic building block which has been tethered to an organic polymer. POSS are silica precusors, having a well defined silsesquioxane cental core surrounded by an organic periphery which makes them compatible with monomers and possibly polymers. The objectives of this study are to (1) study the basic structures of POSS homopolymers, (2) to incorporate POSS building blocks by a bottomup approach into polymer chains and study the resulting morphologies, and (3) to study the thin film behavior of POSS block copolymers. PMA and styryl POSS homopolymers of different peripheries were synthesized by ATRP and mass spectrometry studies were carried out by MALDI-TOF and ESI. PMA POSS chains undergo a number of fragmentations while styrly POSS chains have a relatively robust backbone. Poly(ethylene-butylene-b-MAPOSS), AB type copolymers and poly(MAPOSS-b-styrene-b-MAPOSS), ABA type copolymers were synthesized by a combination of anionic and ATRP polymerization. Spheres, inverse cylinders, lamellar and crystalline lamellar morphologies were observed for the poly(ethylene-butylene-b- MAPOSS) copolymers. In the poly(MAPOSS-b-styrene-b-MAPOSS) copolymers, cylindrical, lamellar and perforated lamellar morphologies were obtained. Beyond the interaction parameter (χ), total degree of polymerization (N) and volume fraction (f), the conformational asymmetry (ε) also plays an important role in determining the morphology of these block copolymer. Crystallization of the POSS phase and better thermal properties were observed in the both block copolymers. Thin film studies of poly(MAPOSS-b-styrene-b-MAPOSS) copolymers showed that the microdomains can be oriented either parallel or perpendicular to the substrate depending upon the film thickness, morphology and relative volume fractions of the connecting blocks. By removal of the organic phase, ordered mesoporous low dielectric constant silica films were obtained. These hybrid block copolymers are a potential candidate for nanopatterning applications.
89

Phase Behavior of Block Copolymers in Compressed CO2 and as Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 nm Pattern Transfer

Chandler, Curran Matthew 01 September 2011 (has links)
Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts - the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-b-isoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2-3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6-7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4-based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.
90

Phase Behavior Study and Thermoresponsive Bilayer Fabrication of Organogels

Lai, Tzu-Yu 09 July 2020 (has links)
No description available.

Page generated in 0.0331 seconds