• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New concepts for managing diabetes mellitus / Fred Keet

Keet, Fred January 2003 (has links)
Preface - Biotechnology is generally considered to be the wave of the future. To facilitate accurate and rapid development of medication and treatments, it is critical that we are able to simulate the human body. One section of this complex model would be the human energy system. Pharmaceutical companies are currently pouring vast amounts of capital into research regarding general simulation of cellular structures, protein structures and bodily processes. Their aim is to develop treatments and medication for major diseases. Some of these diseases are epidemics like cancer, cardiovascular diseases, stress, obesity, etc. One of the most important causes of these diseases is poor blood glucose control. Current management methods for insulin dependent diabetes are limited to trial and error systems: clearly ineffective and prone to errors. It is critical that better management systems be developed, to ease the diabetic epidemic. The blood glucose control system is one of the major systems in the body, as we are in constant need of energy to facilitate the optimum functioning of the human body. This study makes use of a developed simulation model for the human energy system to ease the management of Diabetes mellitus, which is a malfunction of the human energy system. This dissertation is presented in two parts: The first part discusses the human energy simulation model, and the verification thereof, while the second presents possible applications of this model to ease the management of Diabetes. The human energy system simulation model - This section discusses the development and verification of the model. It also touches on the causes, and current methods, of managing diabetes, as well as the functioning of the human energy system. The human energy model is approached with the conservation of energy in mind. A top down model is developed, using data from independent studies to verify the model. Application of human energy simulation model - The human energy simulation model is of little use if the intended audience cannot use it: people suffering from malfunctioning energy systems. These include people having trouble with obesity, diabetes, cardiovascular disease, etc. To facilitate this, we need to provide a variety of products useable by this group of people. We propose a variety of ways in which the model can be used: Cellular phone applications, Personal digital assistants (PDAs) applications, as well as computer software. By making use of current technology, we generate a basic proof-of-concept application to demonstrate the intended functionality. / MIng (Mechanical Engineering) North-West University, Potchefstroom Campus, 2004
2

New concepts for managing diabetes mellitus / Fred Keet

Keet, Fred January 2003 (has links)
Preface - Biotechnology is generally considered to be the wave of the future. To facilitate accurate and rapid development of medication and treatments, it is critical that we are able to simulate the human body. One section of this complex model would be the human energy system. Pharmaceutical companies are currently pouring vast amounts of capital into research regarding general simulation of cellular structures, protein structures and bodily processes. Their aim is to develop treatments and medication for major diseases. Some of these diseases are epidemics like cancer, cardiovascular diseases, stress, obesity, etc. One of the most important causes of these diseases is poor blood glucose control. Current management methods for insulin dependent diabetes are limited to trial and error systems: clearly ineffective and prone to errors. It is critical that better management systems be developed, to ease the diabetic epidemic. The blood glucose control system is one of the major systems in the body, as we are in constant need of energy to facilitate the optimum functioning of the human body. This study makes use of a developed simulation model for the human energy system to ease the management of Diabetes mellitus, which is a malfunction of the human energy system. This dissertation is presented in two parts: The first part discusses the human energy simulation model, and the verification thereof, while the second presents possible applications of this model to ease the management of Diabetes. The human energy system simulation model - This section discusses the development and verification of the model. It also touches on the causes, and current methods, of managing diabetes, as well as the functioning of the human energy system. The human energy model is approached with the conservation of energy in mind. A top down model is developed, using data from independent studies to verify the model. Application of human energy simulation model - The human energy simulation model is of little use if the intended audience cannot use it: people suffering from malfunctioning energy systems. These include people having trouble with obesity, diabetes, cardiovascular disease, etc. To facilitate this, we need to provide a variety of products useable by this group of people. We propose a variety of ways in which the model can be used: Cellular phone applications, Personal digital assistants (PDAs) applications, as well as computer software. By making use of current technology, we generate a basic proof-of-concept application to demonstrate the intended functionality. / MIng (Mechanical Engineering) North-West University, Potchefstroom Campus, 2004

Page generated in 0.0669 seconds