• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 62
  • 20
  • 16
  • 8
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 392
  • 213
  • 124
  • 116
  • 100
  • 93
  • 70
  • 69
  • 61
  • 61
  • 54
  • 52
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Monitoring Kraft Recovery Boiler Fouling by Multivariate Data Analysis

Edberg, Alexandra January 2018 (has links)
This work deals with fouling in the recovery boiler at Montes del Plata, Uruguay. Multivariate data analysis has been used to analyze the large amount of data that was available in order to investigate how different parameters affect the fouling problems. Principal Component Analysis (PCA) and Partial Least Square Projection (PLS) have in this work been used. PCA has been used to compare average values between time periods with high and low fouling problems while PLS has been used to study the correlation structures between the variables and consequently give an indication of which parameters that might be changed to improve the availability of the boiler. The results show that this recovery boiler tends to have problems with fouling that might depend on the distribution of air, the black liquor pressure or the dry solid content of the black liquor. The results also show that multivariate data analysis is a powerful tool for analyzing these types of fouling problems. / Detta arbete handlar om inkruster i sodapannan pa Montes del Plata, Uruguay. Multivariat dataanalys har anvands for att analysera den stora datamangd som fanns tillganglig for att undersoka hur olika parametrar paverkar inkrusterproblemen. Principal·· Component Analysis (PCA) och Partial Least Square Projection (PLS) har i detta jobb anvants. PCA har anvants for att jamfora medelvarden mellan tidsperioder med hoga och laga inkrusterproblem medan PLS har anvants for att studera korrelationen mellan variablema och darmed ge en indikation pa vilka parametrar som kan tankas att andras for att forbattra tillgangligheten pa sodapannan. Resultaten visar att sodapannan tenderar att ha problem med inkruster som kan hero pa fdrdelningen av luft, pa svartlutens tryck eller pa torrhalten i svartluten. Resultaten visar ocksa att multivariat dataanalys ar ett anvandbart verktyg for att analysera dessa typer av inkrusterproblem.
352

Shattering Kraft Recovery Boiler Smelt by a Steam Jet

Taranenko, Anton 19 March 2013 (has links)
Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases the likelihood of dissolving tank explosions. While industry has not dedicated much effort to smelt shattering, the safety implications require smelt shattering to be studied in detail. An experimental set-up was constructed to simulate the shattering operation using a water-glycerine solution and air instead of smelt and steam respectively. The objective was to examine how physical properties and flow characteristics affect shattering. It was found that increasing shatter jet velocity greatly reduced droplet mean diameter. Increasing the liquid flow rate greatly increased droplet size, as expected. Shattering was not significantly affected by viscosity, unless a weak shatter jet was used on a highly viscous fluid. Increasing the proximity of the shatter jet nozzle decreased droplet size.
353

Novel approaches in determining baseline information on annual disposal rates and trace element content of U.S. coal combustion residues : a response to EPA’s June 2010 proposed disposal rule

Chwialkowski, Natalia Ewa 14 February 2011 (has links)
Although products of coal combustion (PCCs) such as coal ash are currently exempted from classification as a hazardous waste in the United States under the 1976 Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) is now revising a proposed rule to modify disposal practices for these materials in order to prevent contamination of ground- and surface water sources by leached trace elements. This paper analyzes several aspects of EPA’s scientific reasoning for instating the rule, with the intent of answering the following questions: 1) Are EPA’s cited values for PCC production and disposal accurate estimates of annual totals?; 2) In what ways can EPA’s leaching risk modeling assessment be improved?; 3) What is the total quantity of trace elements contained within all PCCs disposed annually?; and 4) What would be the potential costs and feasibility of reclassifying PCCs not under RCRA, but under existing NRC regulations as low-level radioactive waste (LLRW)? Among the results of my calculations, I found that although EPA estimates for annual PCC disposal are 20% larger than industry statistics, these latter values appear to be closer to reality. Second, EPA appears to have significantly underestimated historical PCC disposal: my projections indicate that EPA’s maximum estimate for the quantity of fly ash landfilled within the past 90 years was likely met by production in the last 30 years alone, if not less. Finally, my analysis indicates that while PCCs may potentially meet the criteria for reclassification as low-level radioactive waste by NRC, the cost of such regulation would be many times that of the EPA June proposed disposal rule ($220-302 billion for PCCs disposed in 2008 alone, versus $1.47 billion per year for the Subtitle C option and $236-587 million for Subtitle D regulatory options). / text
354

A Passive Mid-infrared Sensor to Measure Real-time Particle Emissivity and Gas Temperature in Coal-fired Boilers and Steelmaking Furnaces

Rego Barcena, Salvador 01 August 2008 (has links)
A novel technique for measuring gas temperature and spectral particle emissivity in high-temperature gas-particle streams is presented. The main application of this optical sensor is to improve the process control of batch unit operations, such as steelmaking furnaces. The spectral emission profile of CO and CO2 and the continuous particle emission in the 3.5 to 5 μm wavelength region was recorded and analyzed in real time with a low-resolution passive sensor. The sensor consisted of light collecting optics, a dispersion element (grating spectrometer) and a 64-pixel pyroelectric array. Wavelength and radiance calibrations were performed. The temperature of the gas-particle medium (Tg+p) followed from the least-squares minimization of the difference between the measured radiance in the 4.56-4.7 μm region –which saturates due to the large CO2 concentrations and path lengths in industrial furnaces– and the corresponding blackbody radiance. Particle emissivity (εp) was calculated at 3.95 μm from an asymptotic approximation of the Radiative Transfer Equation that yields the emerging radiance from a semi-infinite particle cloud. The major source of error in the magnitude of Tg+p and εp could come from particle scattering. Through the method of embedded invariance an expression was developed to estimate the lowering effect of particle size and volume fraction on the saturation of the 4.56-4.7 μm CO2 emission region. An iterative procedure for correcting the values of the gas-particle temperature and particle emissivity was applied to the datasets from the two industrial tests. Results from the measurement campaigns with the infrared sensor prototype at two full-scale furnaces are presented. A proof-of-concept test at a coal-fired boiler for electricity production was followed by more extensive measurements at a Basic Oxygen Furnace (BOF) for steelmaking. The second test provided temperature and particle emissivity profiles for eight heats, which highlighted the simplicity of the technique in obtaining in-situ measurements for modeling studies. Through the analysis of the particle emissivity profile in the BOF and the definition of a new variable –the minimum carbon time– a novel end-point strategy to stop the injection of high-purity oxygen during low-carbon heats in BOF converters was proposed.
355

A Passive Mid-infrared Sensor to Measure Real-time Particle Emissivity and Gas Temperature in Coal-fired Boilers and Steelmaking Furnaces

Rego Barcena, Salvador 01 August 2008 (has links)
A novel technique for measuring gas temperature and spectral particle emissivity in high-temperature gas-particle streams is presented. The main application of this optical sensor is to improve the process control of batch unit operations, such as steelmaking furnaces. The spectral emission profile of CO and CO2 and the continuous particle emission in the 3.5 to 5 μm wavelength region was recorded and analyzed in real time with a low-resolution passive sensor. The sensor consisted of light collecting optics, a dispersion element (grating spectrometer) and a 64-pixel pyroelectric array. Wavelength and radiance calibrations were performed. The temperature of the gas-particle medium (Tg+p) followed from the least-squares minimization of the difference between the measured radiance in the 4.56-4.7 μm region –which saturates due to the large CO2 concentrations and path lengths in industrial furnaces– and the corresponding blackbody radiance. Particle emissivity (εp) was calculated at 3.95 μm from an asymptotic approximation of the Radiative Transfer Equation that yields the emerging radiance from a semi-infinite particle cloud. The major source of error in the magnitude of Tg+p and εp could come from particle scattering. Through the method of embedded invariance an expression was developed to estimate the lowering effect of particle size and volume fraction on the saturation of the 4.56-4.7 μm CO2 emission region. An iterative procedure for correcting the values of the gas-particle temperature and particle emissivity was applied to the datasets from the two industrial tests. Results from the measurement campaigns with the infrared sensor prototype at two full-scale furnaces are presented. A proof-of-concept test at a coal-fired boiler for electricity production was followed by more extensive measurements at a Basic Oxygen Furnace (BOF) for steelmaking. The second test provided temperature and particle emissivity profiles for eight heats, which highlighted the simplicity of the technique in obtaining in-situ measurements for modeling studies. Through the analysis of the particle emissivity profile in the BOF and the definition of a new variable –the minimum carbon time– a novel end-point strategy to stop the injection of high-purity oxygen during low-carbon heats in BOF converters was proposed.
356

Shattering Kraft Recovery Boiler Smelt by a Steam Jet

Taranenko, Anton 19 March 2013 (has links)
Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases the likelihood of dissolving tank explosions. While industry has not dedicated much effort to smelt shattering, the safety implications require smelt shattering to be studied in detail. An experimental set-up was constructed to simulate the shattering operation using a water-glycerine solution and air instead of smelt and steam respectively. The objective was to examine how physical properties and flow characteristics affect shattering. It was found that increasing shatter jet velocity greatly reduced droplet mean diameter. Increasing the liquid flow rate greatly increased droplet size, as expected. Shattering was not significantly affected by viscosity, unless a weak shatter jet was used on a highly viscous fluid. Increasing the proximity of the shatter jet nozzle decreased droplet size.
357

Design průmyslového kotle s možností kogenerace / Design of industrial boiler with cogeneration

Mička, Radek January 2017 (has links)
The diploma thesis deals with the design of the industrial boiler for biomass, Which deals with the issue of the energy future of combustion of fuels using current power generation - microcogeneration, designed for larger houses or smaller com- panies. The shape of the device is the interconnection of individual functional and technological parts of the boiler, a view of a new product that re ects its function. It uses modern and timeless materials, color and control technology to achieve overall comfort and time savings and service.
358

Armatury v otopných soustavách / Fittings of heating systems

Klus, Lukáš January 2018 (has links)
The theme of this diploma thesis is fittings of heating systems and it is divided into three parts. The first part deals with this topic on theoretical level. In the second part, there is a calculations and drawings that deals with heating and water heating of the apartment building in Uherské Hradiště. This part is solved in two variants concerning hydraulic balancing and regulation of the heating system. The last part of the thesis is an experimental solution and processing of pressure loss results of selected valves. These results are compared with the values reported by the manufactures of the valve.
359

Teplonosné látky tepelných soustav / Of heat transfer fluid of heat systems

Ženožička, Filip January 2018 (has links)
The subject of this diploma thesis is the design of heating and hot water in the administrative building in Zlin on Jižní Svahy. The building has five floors above ground and one underground floor. There are designed two variants of heat source for heating and hot water (transfer sta-tions and gas boiler). Part A solves water quality in heating systems. Part B deals with design of the heating system, hot water heating, insurance and facility expansion, technical report and drawings heating in the building. The last part C is the experimental measurement of the quality of heating water in the CZT systems.
360

Návrh otopné soustavy a nuceného větrání pro dvougenerační vilu / Space heating and ventilation in a two-generation house

Kazda, Jan January 2018 (has links)
This Master's thesis deals with the evaluation of a current state of two-generation villa and its following proposal of the optimization. Evaluation includes calculation of heat loss of a current state. Optimization is based on the reduction of heat loss in the building, pressure balance of the system, change of heat source and installation of balanced ventilation. Chapter describing regulation of technology follows and in conclusion indicative price for the whole suggested technology is calculated.

Page generated in 0.0436 seconds