51 |
Measurement of gas evolution from PUNB bonded sand as a function of temperatureSamuels, Gregory James 01 July 2011 (has links)
The chemical binders used to make sand molds and cores thermally decompose and release gas when subjected to the high temperature conditions in sand casting processes. Computational models that predict the evolution of the binder gas are being introduced into casting simulations in order to better predict and eliminate gas defects in metal castings. These models require knowledge of the evolved binder gas mass and molecular weight as a function of temperature, but available gas evolution data are limited. In the present study, the mass and molecular weight of gas evolved from PUNB bonded sand are measured as a function of temperature for use with binder gas models. Thermogravimetric analysis of bonded sand is employed to measure the binder gas mass evolution as a function of temperature for heating rates experienced in molds and cores during casting. The volume and pressure of gas evolved from bonded sand are measured as a function of temperature in a specially designed quartz manometer during heating and cooling in a furnace. The results from these experiments are combined with the ideal gas law to determine the binder gas molecular weight as a function of temperature. Thermogravimetric analysis reveals that the PUNB binder significantly decomposes when heated to elevated temperatures, and the PUNB binder gas mass evolution is not strongly influenced by heating rate. During heating of PUNB bonded sand at a rate of 2°C/min, the binder gas molecular weight rapidly decreases from 375 g/mol at 115°C to 99.8 g/mol at 200°C. The molecular weight is relatively constant until 270°C, after which it decreases to 47.7 g/mol at 550°C. The molecular weight then steeply decreases to 30.3 g/mol at 585°C and then steeply increases to 47.2 g/mol at 630°C, where it remains constant until 750°C. Above 750°C, the binder gas molecular weight gradually decreases to 33.3 g/mol at 898°C. The present measurements are consistent with the molecular weights calculated using the binder gas composition data from previous studies. The binder gas is composed of incondensable gases above 709°C, and the binder gas partially condenses during cooling at 165°C if the bonded sand is previously heated below 507°C.
|
52 |
Measurement of elastic modulus of PUNB bonded sand as a function of temperatureThole, Jacob Andrew 01 May 2010 (has links)
Foundries today use temporary molds made from silica sand with a resin bonding agent to hold a form until the metal is poured. With the aid of computer simulations, the molds are designed to produce good castings with minimal pattern iterations by calculating cooling and porosity. Stress analysis simulations are being developed using the current software, but the known mechanical properties for the sand mold are minimal and incomplete. This study measures the elastic modulus of bonded sand as a function of temperature to obtain baseline data for the model. Following ASTM standards, a three point bend test is used to measure the elastic modulus of chemically bonded sand as a function of temperature to better understand the complex nature of the mold as it undergoes heating and cooling. Multiple measurements of the elastic modulus of PUNB bonded silica sand are performed from room temperature to 500°C in a nitrogen atmosphere to capture the changes in the elastic modulus under heating. It is found that for an intermediate heating rate of 8°C/min, the elastic modulus decreases steeply from a room temperature value of about 3,600 MPa to 600 MPa at 125°C. Between 125°C and 250°C, the elastic modulus is relatively constant. Above 250°C, it increases to 1,200 MPa at 280°C and then decreases again to 800 MPa at 350°C. Above 350°C, the elastic modulus increases linearly with temperature until it reaches 2,200 MPa at 500°C. At approximately 500°C, the strength of the bonded sand vanishes. At a given temperature above 125°C, the elastic modulus can vary by more than a factor of two depending on the heating rate. Furthermore, the elastic modulus agrees with previous steady state temperature measurement literature when specimens are held at a constant temperature until the elastic modulus reach steady. It is also found that the addition of black iron oxide has no effect on the elastic modulus, whereas solvent removal before a test increases the stiffness of the bonded sand at temperatures below 150°C.
|
53 |
The conjunctive use of bonded repairs and crack growth retardation techniquesKieboom, Orio Terry, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
In an attempt to find a way of improving the damage tolerance of composite bonded repairs to metallic aircraft structures, the effect of using conventional crack growth retardation techniques in conjunction with bonded repairs was experimentally investigated. Hence, an experimental test program was set up to determine whether fatigue crack growth under bonded repairs is retarded further by giving the crack to be repaired a crack growth retardation treatment prior to repair patch application. In addition, it was set up to determine the influence of a bonded repair on the effectiveness of a crack growth retardation method. Centrally cracked aluminium plates were used. Stop drilling followed by cold hole expansion and the application of single overloads were selected as retardation treatments. Two patch materials were considered; boron/epoxy and Glare 2. Further test variables were the aluminium alloy and the plate thickness. Fatigue testing was carried out under constant amplitude loading and baseline results were determined first. In addition to optically monitoring the crack growth, local and global out-of-plane deformations were visualised with holographic interferometry and shadow moire??. Furthermore, the stress intensity factors under the repair patch were examined with strain gauges and measurement of the central crack opening displacement. Disbonds and fracture surfaces were studied after residual strength tests. The crack growth results obtained showed that retardation treatments decrease crack growth rates under a repair patch and that the effectiveness of a retardation treatment is increased by the patch. Although identical crack growth rates were observed under boron/epoxy and Glare 2 patches, the reinitiation period after the retardation treatment lasted longer when Glare 2 patches were applied. Analytical predictions of the extent of retardation based on existing models showed that the conjunctive effect of retardation treatments and bonded repairs was underestimated. A sustained reduction in crack growth rates was observed under bonded repairs with a prior overload retardation treatment. It was concluded that the damage tolerance of bonded repairs is increased by the application of a crack growth retardation treatment because the crack growth is retarded further. These findings indicate that the range of cracks in aircraft for which bonded repairs can be considered is expanded and that economic benefits can be obtained.
|
54 |
Optimisation of parametric equations for shock transmission through surface ships from underwater explosionsElder, David James, d.elder@crc-acs.com.au January 2006 (has links)
Currently shock effects on surface ships can be determined by full scale shock trials, Finite Element Analysis or semi empirical methods that reduce the analytical problem to a limited number of degrees of freedom and include hull configurations, construction methods and materials in an empirical way to determine any debilitating effects that an explosion may have on the ship. This research has been undertaken to better understand the effect of hull shape on surface ships' shock response to external underwater explosions (UNDEX). The study is within the semi empirical method category of computations. A set of simple closed-form equations has been developed that accurately predicts the magnitude of dynamic excitation of different 2- D rigid-hull shapes subject to far-field UNDEX events. This research was primarily focused on the affects of 2-D rigid hull shapes and their contribution to global ship motions. A section of the thesis,
|
55 |
Structure Property Relationships for Dirhodium Antitumor Active Compounds: Reactions with Biomolecules and In Cellulo StudiesAguirre-Flores, Jessica Dafhne 2009 December 1900 (has links)
The molecular characteristics that affect the activity of various
dirhodium complexes are reported. The importance of the axial position in
the action of dirhodium compounds was studied. Three dirhodium complexes
with increasing number of accessible axial coordination sites were
synthesized and characterized. In cis-[Rh2(u-OAc)2(np)2]2+ (np = 1,8-
naphthyridine) both axial sites are available for coordination, whereas for
cis-[Rh2(u-OAc)2(np)(pynp)]+2 (pynp = 2-(2-pyridyl)1,8-naphthyridine) and
cis-[Rh2(u-OAc)2(pynp)2]+2 the pyridyl arm on the ligand pynp blocks one and
two axial sites, respectively. The availability of the axial positions affects the
in vitro and in cellulo activity of these complexes demonstrating that open
axial coordination sites are necessary for biological activity.
The inhibitory activity of derivatives of dirhodium-dppz complexes
(dppz = dipyrido[3,2-a:2',3'-c]phenazine) has also been investigated. The
dppz derivatives included compounds with electron-withdrawing (Cl, CN,
and NO2) as well as electro-donating (MeO and Me) substituents. These
compounds inhibit transcription of T7-RNA polymerase by reducing
accessible cysteine residues. The activity correlates with the electron withdrawing character of the substituent on the dppz ligand. Density
functional theory (DFT) calculations reveal that the lowest unoccupied
molecular orbitals (LUMOs) in the series are ligand-based pi* orbitals
localized on the phenazine ring. These complexes represent the first family
of dirhodium complexes whose inhibitory ability can be tuned by controlling
their redox properties.
The effect of the presence of diimine ligands in the dirhodium core in
both in vitro and in cellulo activity is discussed. The presence of one diimine
ligand allows for dual binding, intercalation and covalent, as observed by
melting temperature and relative viscosity measurements, as well as
electrophoretic mobility shift assay (EMSA). The mono-substituted
dirhodium complexes are effective against HeLa and COLO-316 cell lines,
with [Rh2(u-O2CCH3)2(n1-O2CCH3)(dppz)]+ being the most effective compound
of the series. Results of the comet assay indicate that all of the monosubstituted
complexes studied damage nuclear DNA, although in different
degrees. The cytotoxic effect of these complexes is not affected by the
presence of glutathione. The addition of the second diimine ligand hinders
the ability of the complexes to damage DNA. The bis-substituted complexes
are also slightly less cytotoxic than their mono-substituted congeners. Thus,
the number of equatorial positions occupied by diimine ligands play a critical
role in the mechanism of cytotoxicity of dirhodium(II,II) complexes.
Finally, the results also demonstrate that improving the
internalization of the dirhodium complexes can be achieved by co-incubation
with cell penetrating peptides. This work provides a foundation for the
preparation of new and more effective dirhodium complexes.
|
56 |
Analytical Study on Adhesively Bonded Joints Using Peeling Test and Symmetric Composite Models Based on Bernoulli-Euler and Timoshenko Beam Theories for Elastic and Viscoelastic MaterialsSu, Ying-Yu 2010 December 1900 (has links)
Adhesively bonded joints have been investigated for several decades. In most analytical studies, the Bernoulli-Euler beam theory is employed to describe the behaviour of adherends. In the current work, three analytical models are developed for adhesively bonded joints using the Timoshenko beam theory for elastic material and a Bernoulli-Euler beam model for viscoelastic materials.
One model is for the peeling test of an adhesively bonded joint, which is described using a Timoshenko beam on an elastic foundation. The adherend is considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) only the transverse shear stress is present (mode II); and (3) the normal and shear stresses co-exist (mode III) in the adhesive. The governing equations are derived in terms of the displacement and rotational angle of the adherend in each case. Analytical solutions are obtained for the displacements, rotational angle, and stresses. Numerical results are presented to show the trends of the displacements and rotational angle changing with geometrical and loading conditions.
In the second model, the peeling test of an adhesively bonded joint is represented using a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend is considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a linearly elastic foundation. Two cases under different stress history are considered: (1) only the normal stress is acting (mode I); and (2) only the transverse shear stress is present (mode II). The governing equations are derived in terms of the displacements. Analytical solutions are obtained for the displacements. The numerical results show that the deflection increases as time and temperature increase.
The third model is developed using a symmetric composite adhesively bonded joint. The constitutive and kinematic relations of the adherends are derived based on the Timoshenko beam theory, and the governing equations are obtained for the normal and shear stresses in the adhesive layer. The numerical results are presented to reveal the normal and shear stresses in the adhesive.
|
57 |
Tensile Behavior Of Chemically Bonded Post-installed Anchors In Low Strength Reinforced ConcretesMaziliguney, Levent 01 June 2007 (has links) (PDF)
After the 1999 Kocaeli Earthquake, the use of chemically bonded post-installed
anchors has seen a great growth for retrofits in Turkey. Currently, chemically bonded
post-installed anchors are designed from related tables provided by adhesive
manufacturers and a set of equations based on laboratory pullout tests on normal or
high strength concretes. Unfortunately, concrete compressive strengths of existing
buildings, which need retrofit for earthquake resistance, ranges within 5 to 16 MPa.
The determination of tensile strength of chemically bonded anchors in low-strength
concretes is an obvious prerequisite for the design and reliability of retrofit projects.
Since chemically bonded anchors result in the failure of concrete, adhesive-concrete
interface or anchored material, the ultimate resistance of anchor can be predicted
through the sum of the contributions of concrete strength, properties of anchored
material (which is steel for this work), and anchorage depth. In this work, all three
factors and the predictions of current tables and equations related to anchorages are
examined throughout site tests.
|
58 |
The construction and role of non-covalent benchmarks in computational chemistryMarshall, Michael S. 02 July 2012 (has links)
This thesis focuses on the construction and role of benchmark quality computations in the area of
non-covalent interactions. We have provided a detailed error analysis of focal-point schemes
commonly used in benchmark quality computations, as well as provide error and speedup analysis of
commonly used approximations to these methods. An analysis of basis set effects on
higher-order corrections to MP2/CBS has been carried out, providing the community error bounds on future benchmarks. We demonstrate how these high-level computations can elucidate a better
understanding of non-bonded interactions in chemistry as well as provide high-quality reference data to refit existing methods against to increase the overall accuracy of the method.
|
59 |
First principles study of point-like defects and impurities in silicon, carbon, and oxide materialsKweon, Kyoung Eun, 1981- 10 March 2014 (has links)
Since materials properties are determined by the interactions between the constituent atoms, an accurate description of the inter-atomic interactions is crucial to characterize and control material properties. Particularly, a quantitative understanding of the formation and nature of defects and impurities becomes increasingly important in the era of nanotechnology, as the imperfections largely influence many properties of nanoscale materials. Indeed, due to its technological importance and scientific interest, there have been significant efforts to better understand their behavior in semiconductors and oxides, and their interfaces, yet many fundamental aspects are still ambiguous due largely to the difficulty of direct characterization. Hence, our study has focused on developing a better understanding of atomic-scale defects and impurities using first principles quantum mechanical calculations. In addition, based on the improved understanding, we have attempted to address some engineering problems encountered in the current technology.
The first part of this thesis focuses on mechanisms underlying the transient enhanced diffusion of arsenic (As) during post-implantation annealing by examining the interaction of As with vacancies in silicon. In the second part, we address some fundamental features related to plasma-assisted nitridation of silicon dioxide; this study shows that oxygen vacancy related defects play an important role in (experimentally observed) peculiar nitridation at the Si/SiO2 interface during post O2 annealing. In the third part, we examine the interaction between vacancies and dopants in sp2–bonded carbon such as graphene and nanotube, specifically the formation and dynamics of boron-vacancy complexes and their influence on the electrical properties of host materials. In the fourth part, we study the interfacial interaction between amorphous silica (a-SiO2) and graphene in the presence of surface defects in a-SiO2; this study shows possible modifications in the electronic structure of graphene upon the surface defect assisted chemical binding onto the a-SiO2 surface. In the last part, we examine the structural and electronic properties of bismuth vanadate (BiVO4) which is a promising photocatalyst for water splitting to produce hydrogen; this study successfully explains the underlying mechanism of the interesting photocatalytic performance of BiVO4 that has been experimentally found to strongly depend on structural phase and doping. / text
|
60 |
Utilization of nucleobase pairing to develop supramolecular polymers, electron transfer systems, and interaction with biological moleculesLawrence, Candace Michelle 15 June 2011 (has links)
Hydrogen bonding is seen extensively in Nature. It is manifest in DNA/RNA nucleic acid (nucleobase) pairing, the defining feature of the double helix, as well as in secondary structures in protein folding such as hairpin loops. This importance, thus coupled with the aesthetic appeal of nucleobase hydrogen-bonding interactions, has inspired us to design and synthesize new hydrogen-bonded assemblies that make use of Watson-Crick and Hoogsteen interactions.
Currently, novel supramolecular architectures are being developed for the formation of supramolecular polymers via Watson-Crick hydrogen bonding of guanosine and cytidine. Supramolecular polymer formation occurs through hydrogen bonding, electronic interactions, and metal chelation, and allows for a highly thermodynamic system that can easily be broken and reformed through external stimuli. By synthesizing linear, metal-nucleobase, and functionalized guanosine entities, a variety of new “monomers” have been obtained. Their use in construction of main chain and side chain polymers, and G-quartet hydrogels are now being explored.
The hydrogen bonding motifs used to develop supramolecular polymers are also attractive for developing through bond electron transfer systems. One inspiration for developing artificial donor-acceptor systems (i.e., linked through non-covalent interactions) comes from the light harvesting systems found in Nature. Triggered by a pulse of UV light, electron transfer across bridges, including charge separation and charge recombination processes can occur and the rates can be determined. As one part of this study, collaborators Igor Rubtsov and David Beratan studied how perturbing the vibrational modes of the bridge via IR pulse excitation, affected electron transfer. Mid-IR excitation of the donor-acceptor systems slowed the rate of electron transfer, likely because the molecular vibrations either disrupted the bridging hydrogen bonds or distorted the electronic interactions of the bridge. This observance could lend itself to the possibility of designing IR-controlled molecular switches and other devices
Another mode of hydrogen bonding, Hoogsteen interactions, was explored in the context of developing a guanosine-quadruplex binder. Specifically, a pyrrole-based inosine was designed to direct hydrogen bonding via an extended Hoogsteen interaction in order to bind to quadruplex DNA. Quadruplex DNA has been studied as a folded form of DNA and, if stabilized, can inhibit gene replication especially amongst cancer strands.
In summary, the candidate’s research efforts have focused on exploiting hydrogen bonding in nucleobases to construct novel supramolecular assemblies that could see eventual applications in materials chemistry, nanotechnology, and gene therapy. / text
|
Page generated in 0.0404 seconds