• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Packaging Process of Metal Microcap under Room Temperature Status and Its Shear Stress-Strain Relationship Analysis

Yang, Cong-Ming 25 August 2004 (has links)
A novel room temperature bonding method is used to package the micro-component. The bonding method utilizes metal microcap to package the micro-component under room temperature status, which not only can provide micro-component mechanical support also can prevent micro-component from contamination. The bonding condition under room temperature is the most conventional method can not achieve, which characteristic is the most significant effect factor to drive the wafer-level packaging process to improve in today. Utilizing ASTM standard, which was used as a macroscopic standard to evaluate and analyze the bonding shear strength relationship between the ASTM standard specimen and the metal microcap. The carrier wafer has been oxidized before photolithography process; the diameter of cavity and the contact area between the metal microcap and glass substrate were controlled by the photomask design and the accuracy of the photoresist exposure. The passivation treatment was developed to separate the microcap from the carrier wafer more easily. In this thesis, the metal microcap was fabricated by using electroforming process, which can control the thickness of metal microcap. The advantages of microcap are superior to the thin film poly-silicon made by the surface micromachining technique on the quality and mechanical properties. A glass is used as substrate of the metal microcap, and its transparent characteristic is a feature how we perform UV curing process. The adhesive can be cured under room temperature and the results exhibit the adhesive has excellent bonding strength. SEM is used to analyze the passivation result, the increasing rate of electroforming thickness. The shear stress-strain relationship between the metal microcap and the ASTM standard specimen is also discussed and analyzed in this thesis.

Page generated in 0.0883 seconds