1 |
The Packaging Process of Metal Microcap under Room Temperature Status and Its Shear Stress-Strain Relationship AnalysisYang, Cong-Ming 25 August 2004 (has links)
A novel room temperature bonding method is used to package the micro-component. The bonding method utilizes metal microcap to package the micro-component under room temperature status, which not only can provide micro-component mechanical support also can prevent micro-component from contamination. The bonding condition under room temperature is the most conventional method can not achieve, which characteristic is the most significant effect factor to drive the wafer-level packaging process to improve in today. Utilizing ASTM standard, which was used as a macroscopic standard to evaluate and analyze the bonding shear strength relationship between the ASTM standard specimen and the metal microcap. The carrier wafer has been oxidized before photolithography process; the diameter of cavity and the contact area between the metal microcap and glass substrate were controlled by the photomask design and the accuracy of the photoresist exposure. The passivation treatment was developed to separate the microcap from the carrier wafer more easily. In this thesis, the metal microcap was fabricated by using electroforming process, which can control the thickness of metal microcap. The advantages of microcap are superior to the thin film poly-silicon made by the surface micromachining technique on the quality and mechanical properties. A glass is used as substrate of the metal microcap, and its transparent characteristic is a feature how we perform UV curing process. The adhesive can be cured under room temperature and the results exhibit the adhesive has excellent bonding strength. SEM is used to analyze the passivation result, the increasing rate of electroforming thickness. The shear stress-strain relationship between the metal microcap and the ASTM standard specimen is also discussed and analyzed in this thesis.
|
2 |
Erarbeitung eines Raumtemperatur-Waferbondverfahrens basierend auf integrierten und reaktiven nanoskaligen MultilagensystemenBräuer, Jörg 04 February 2014 (has links) (PDF)
Die vorliegende Arbeit beschreibt einen neuartigen Fügeprozess, das sogenannte reaktive Fügen bzw. Bonden. Hierbei werden sich selbsterhaltene exotherme Reaktionen in nanoskaligen Schichtsystemen als lokale Wärmequelle für das Fügen unterschiedlichster Substrate der Mikrosystemtechnik verwendet. Das Bonden mit den reaktiven Systemen unterscheidet sich von herkömmlichen Verfahren der Aufbau- und Verbindungstechnik primär dadurch, dass durch die rasche Reaktionsausbreitung bei gleichzeitig kleinem Reaktionsvolumen die Fügetemperaturen unmittelbar auf die Fügefläche beschränkt bleiben. Entgegen den herkömmlichen Fügeverfahren mit Wärmeeintrag im Volumen, schont das neue Verfahren empfindliche Bauteile und Materialien mit unterschiedlichsten thermischen Ausdehnungskoeffizienten lassen sich besser verbinden.
In der vorliegenden Arbeit werden die Grundlagen zur Dimensionierung, Prozessierung und Integration der gesputterten reaktiven Materialsysteme beschrieben. Diese Systeme werden verwendet, um heterogene Materialien mit unterschiedlichen Durchmessern innerhalb kürzester Zeit auf Wafer-Ebene und bei Raumtemperatur zu bonden. Die so erzeugten Verbindungen werden hinsichtlich der Mikrostruktur, der Zuverlässigkeit sowie der Dichtheit untersucht und bewertet. Zusätzlich wird die Temperaturverteilung in der Fügezone während des Fügeprozesses mit numerischen Methoden vorhergesagt.
|
3 |
Erarbeitung eines Raumtemperatur-Waferbondverfahrens basierend auf integrierten und reaktiven nanoskaligen MultilagensystemenBräuer, Jörg 24 January 2014 (has links)
Die vorliegende Arbeit beschreibt einen neuartigen Fügeprozess, das sogenannte reaktive Fügen bzw. Bonden. Hierbei werden sich selbsterhaltene exotherme Reaktionen in nanoskaligen Schichtsystemen als lokale Wärmequelle für das Fügen unterschiedlichster Substrate der Mikrosystemtechnik verwendet. Das Bonden mit den reaktiven Systemen unterscheidet sich von herkömmlichen Verfahren der Aufbau- und Verbindungstechnik primär dadurch, dass durch die rasche Reaktionsausbreitung bei gleichzeitig kleinem Reaktionsvolumen die Fügetemperaturen unmittelbar auf die Fügefläche beschränkt bleiben. Entgegen den herkömmlichen Fügeverfahren mit Wärmeeintrag im Volumen, schont das neue Verfahren empfindliche Bauteile und Materialien mit unterschiedlichsten thermischen Ausdehnungskoeffizienten lassen sich besser verbinden.
In der vorliegenden Arbeit werden die Grundlagen zur Dimensionierung, Prozessierung und Integration der gesputterten reaktiven Materialsysteme beschrieben. Diese Systeme werden verwendet, um heterogene Materialien mit unterschiedlichen Durchmessern innerhalb kürzester Zeit auf Wafer-Ebene und bei Raumtemperatur zu bonden. Die so erzeugten Verbindungen werden hinsichtlich der Mikrostruktur, der Zuverlässigkeit sowie der Dichtheit untersucht und bewertet. Zusätzlich wird die Temperaturverteilung in der Fügezone während des Fügeprozesses mit numerischen Methoden vorhergesagt.
|
Page generated in 0.2531 seconds