Spelling suggestions: "subject:"boreal shielding""
1 |
BOREAL SHIELD PEATLAND CO2 EXCHANGE: A MULTI-YEAR ANALYSIS AND POST-WILDFIRE RECOVERY ASSESSMENTMcDonald, Renee January 2021 (has links)
Peatland ecosystems are important as natural climate regulators for their capacity to store carbon over long-time scales. Carbon cycling in peatlands in the boreal ecozone of Canada has been more widely studied than the boreal shield of Ontario, where peat depths are thinner and peatlands spatially smaller. The reliance on fill and spill hydrologic connectivity makes the water table dynamics of peatlands in Ontario’s Eastern Georgian Bay (EGB) region of the Ontario shield ecozone sensitive to rain and drought periods. The drying of wetlands in the EGB region decreases moss productivity and increases the ecosystem’s vulnerability to wildfire through an increase in the water table depth. In an effort to understand how peatlands respond to interannual climate variability and wildfire, we examined the role of regional climate patterns on growing season CO2 exchange from an Ontario shield peatland and completed a post-wildfire assessment of CO2 exchange patterns in a recently burned peatland for the first and second year post-wildfire. Using the eddy covariance technique, we analyzed 5-years of growing season CO2 exchange data from 2016 to 2020 from an unburned peatland and 2-years of growing season CO2 exchange data from a burned peatland (2019-2020) in EGB. Plot-scale CO2 exchange measurements were also completed within the burned peatland jointly with abiotic variables and vegetation community surveys. Water table depth was identified as an important variable to explain total summer CO2 uptake (GPP) and net ecosystem exchange (NEE), where years of considerable rainfall maintained a water table near the peat surface and perpetuated high vegetation productivity. Summer total ecosystem respiration (ER) was greatly influenced by preceding winter and spring air temperature, with warmer winter air temperatures leading to summers of increased total ER. Warmer winter air temperatures also initiated water flow across the landscape, thus reviving plant and microbial activity following snow cover. These findings have important implications for the function of these shallow Ontario shield peatlands in a warming climate, where decreased water availability with projected increased temperatures and evapotranspiration leaves peatlands at risk of a net loss of C over the summer with lower water table.
In the burned landscape, there was lower GPP in the summer (2019) compared to the wet summer of 2020, however the burned landscape continued to act as a net CO2 sink for the summer season of both years. The rapid recovery of vegetation across the wildfire-disturbed landscape has important implications for the function of these peatlands over time, with the ability for continued carbon uptake and reinstating peat accumulation processes. / Thesis / Master of Science (MSc)
|
2 |
Responses of zooplankton community structure and ecosystem function to the invasion of an invertebrate predator, Bythotrephes longimanusStrecker, Angela Lee 20 July 2007 (has links)
Freshwater ecosystems face unprecedented levels of human-induced stresses and it is expected that the invasion of non-indigenous species will cause the greatest loss of biodiversity in lakes and rivers worldwide. Bythotrephes longimanus is a predatory invertebrate that invaded North America in the early 1980s, first being detected in the Great Lakes, and then moving to a number of inland lakes in Ontario and the northern United States. Using experimental and survey-based approaches, I tested several hypotheses concerning the effects of Bythotrephes on native zooplankton community structure and function. My results indicate that Bythotrephes reduces total abundance, biomass, and richness of zooplankton, especially cladoceran taxa, throughout the ice-free season. As a result of high predation pressure by the invader, total seasonal and epilimnetic zooplankton production was also substantially reduced in invaded lakes, which may have important consequences for the transfer of energy to fish and other taxa that feed on zooplankton. Interestingly, there was some evidence that zooplankton shifted their reproduction in time and space to avoid Bythotrephes, which may buffer the effects of the invader on food web functioning. Other measures of ecosystem function were relatively unaffected by the invasion of Bythotrephes. In addition, Bythotrephes may interact in unexpected ways with other anthropogenic stressors, and act to slow down the process of recovery by preying on species that maintain community abundance during acidification, but also affecting species attempting to recolonize historically acidified lakes. Although dispersal of zooplankton may maintain some of the ecosystem functions provided by zooplankton communities, loss of biodiversity may be a permanent result of invasion. The effects of the continued spread of invasive species across the landscape may be profound, as the invader Bythotrephes has demonstrably altered zooplankton communities and may reduce the ability of freshwater ecosystems to respond to future environmental change and maintain ecosystem functioning. / Thesis (Ph.D, Biology) -- Queen's University, 2007-07-19 14:56:57.102
|
Page generated in 0.0528 seconds