• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of the thermal characteristic of the ground in Cyprus and their effect on ground heat exchangers

Pouloupatis, Panayiotis January 2014 (has links)
Since the ancient years, human beings were using holes and caves to protect themselves from weather conditions making it the first known form of exploiting ground’s heat, known as Geothermal Energy. Nowadays, geothermal energy is mainly used for electricity production, space heating and cooling, Ground Coupled Heat Pump (GCHP) applications, and many other purposes depending on the morphology of the ground and its temperature. This study presents results of investigations into the evaluation of the thermal properties of the ground in Cyprus. The main objectives were i) to determine the thermal characteristics of the ground in Cyprus, ii) investigate how they affect the sizing and positioning of Ground Heat Exchangers (GHE) and iii) present the results for various ground depths, including a temperature map of the island, as a guide for engineers and specifiers of GCHPs. It was concluded that there is a potential for the efficient exploitation of the thermal properties of the ground in Cyprus for geothermal applications leading to significant savings in power and money as well. Six new boreholes were drilled and two existing ones were used for the investigation and determination of i) the temperature of the ground at various depths, ii) its thermal conductivity, iii) its specific heat and iv) its density. The thermal conductivity was determined by carrying out experiments using the line source method and was found to vary in the range between 1.35 and 2.1 W/mK. It was also observed that the thermal conductivity is strongly affected by the degree of saturation of the ground. The temperature of the undisturbed ground in the 8 borehole locations was recorded monthly for a period of 1 year. The investigations showed that the surface zone reaches a depth of 0.25 m and the shallow zone 7 to 8 m. The undisturbed ground temperature in the deep zone was measured to be in the range of 18.3 °C to 23.6 °C and is strongly dependent on the soil type. Since the ground temperature is a vital parameter in ground thermal applications, the temperature of the ground in locations that no information is available was predicted using Artificial Neural Networks and the temperature map of the island at depths of 20 m, 50 m and 100 m was generated. Data obtained at the location of each borehole were used for the training of the network. Data for the sizing of GHEs based on the ground properties of Cyprus were presented in an easily accessible form so that they can be used as a guide for preliminary system sizing calculations. With the aid of Computational Fluid Dynamics (CFD) software the capacity of the GHEs in each location and the optimum distance between them was estimated. Additionally, the long term temperature variation of the ground was investigated. For the first time since a limited study in the 1970’s, a research focusing on the determination and presentation of the thermal properties of the ground in Cyprus has been carried out. Additionally, the use of Artificial Neural Networks (ANNs) is an innovative approach for the prediction of data at locations where no information is available. The publication of this information not only contributes to knowledge locally but also internationally as it enables comparison with other countries with similar climatic conditions to be carried out.
2

Modelling of a large borehole heat exchnager installationin Sweden

Biancucci, Mauro January 2015 (has links)
No description available.
3

Optimización teórico-experimental de sondas de calor para intercambio geotérmico (SGE) según condiciones hidrogeológicas, características geométricas y propiedades de sus materiales

Badenes Badenes, Borja 01 February 2021 (has links)
[ES] Uno de los mayores retos para el mercado de bombas de calor geotérmicas es el alto coste asociado a la perforación de los intercambiadores de calor geotérmicos. Conseguir unos intercambiadores de calor geotérmicos más eficientes reduciría dicho coste, ya que sería necesaria una menor longitud de intercambiador para obtener las mismas temperaturas de trabajo en él (misma eficiencia de la bomba de calor). La eficiencia térmica de un intercambiador de calor geotérmico está caracterizada por su resistencia térmica. Dicha resistencia térmica depende de una serie de elementos entre los que se encuentran: propiedades y caudal del fluido que recorre el intercambiador de calor, diámetro de la perforación geotérmica, geometría y materiales de la tubería del intercambiador de calor y las propiedades del material de relleno de la perforación (grouting). Cuanto mayor sea la resistencia térmica del intercambiador de calor, menor será el calor transferido entre el fluido caloportador y el terreno, traduciéndose en una necesidad mayor de longitud de intercambiador enterrado. Por lo tanto, es necesario una reducción de este parámetro al mínimo posible. En consecuencia, el objetivo principal de esta tesis doctoral consiste en, a partir de un modelo analítico comprensivo de cuantificación del impacto de los parámetros anteriores, realizar un estudio detallado para analizar su influencia combinada en la resistencia térmica del intercambiador geotérmico, pero también examinando dicho efecto en otros planos, como costes económicos de ejecución del intercambiador y de explotación (consumo eléctrico de la bomba de calor y costes de bombeo asociados). / [CA] Un dels majors reptes per al mercat de bombes de calor geotèrmiques és l'alt cost associat a la perforació dels bescanviadors de calor geotèrmics. Aconseguir uns bescanviadors de calor geotèrmics més eficients reduiria aquest cost, ja que seria necessària una menor longitud de bescanviador per a obtenir les mateixes temperatures de treball en ell (mateixa eficiència de la bomba de calor). L'eficiència tèrmica d'un bescanviador de calor geotèrmic està caracteritzada per la seva resistència tèrmica. Aquesta resistència tèrmica depèn d'una sèrie d'elements entre els quals es troben: propietats i cabal del fluid que recorre el bescanviador de calor, diàmetre de la perforació geotèrmica, geometria i materials de la canonada del bescanviador de calor i les propietats del material de farciment de la perforació (grouting). Com més gran sigui la resistència tèrmica del bescanviador de calor, menor serà la calor transferida entre el fluid termòfor i el terreny, traduint-se en una necessitat major de longitud de bescanviador enterrat. Per tant, és necessari una reducció d'aquest paràmetre al mínim possible. En conseqüència, l'objectiu principal d'aquesta Tesi Doctoral consisteix en, a partir d'un model analític comprensiu de quantificació de l'impacte dels paràmetres anteriors, realitzar un estudi detallat per a analitzar la seva influència combinada en la resistència tèrmica del bescanviador geotèrmic, però també examinant aquest efecte en altres plans, com a costos econòmics d'execució del bescanviador i d'explotació (consum elèctric de la bomba de calor i costos de bombament). / [EN] One of the biggest challenges for the ground source heat pump market is the high cost associated with drilling geothermal borehole heat exchangers. Achieving more efficient geothermal heat exchangers would reduce this cost, since a shorter exchanger length would be required to obtain the same working temperatures in it (same efficiency of the heat pump). The thermal efficiency of a geothermal heat exchanger is characterized by its borehole thermal resistance. This borehole thermal resistance depends on a number of parameters, mainly: properties and flow rate of the working fluid that flows through the borehole heat exchanger, diameter of the geothermal borehole, geometry and materials of the heat exchanger pipe and the properties of the borehole grouting material. The higher thermal resistance of the heat exchanger, the less heat is transferred between the heat carrier fluid and the ground, resulting in an increased requirement for the length of the buried heat exchanger. Consequently, it is essential to reduce this parameter to the minimum possible. Therefore, the main objective of this Ph. Doctoral Thesis is to carry out, based on a comprehensive analytical model of quantification of the impact of the above mentioned parameters, a detailed study to analyze their combined influence on the thermal resistance of the geothermal borehole, but also exploring this effect in other less researched areas, such as economic costs of running the exchanger and operating it (electricity consumption of the heat pump and associated pumping costs). / This research has received funding from the European Union’s Horizon 2020 Research and Innovation program under grant agreement No [657982], [727583] and [792355]. / Badenes Badenes, B. (2020). Optimización teórico-experimental de sondas de calor para intercambio geotérmico (SGE) según condiciones hidrogeológicas, características geométricas y propiedades de sus materiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160477 / TESIS

Page generated in 0.0878 seconds