Spelling suggestions: "subject:"dephosphorylation""
11 |
Development of Highly Efficient Synthetic Reactions Catalyzed by Transition Metals / 遷移金属触媒を用いる高効率な合成反応の開発Morimoto, Masao 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18300号 / 工博第3892号 / 新制||工||1597(附属図書館) / 31158 / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 村上 正浩, 教授 吉田 潤一, 教授 杉野目 道紀 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
12 |
Chemistry of meso-Free Subporphyrins / メゾフリーサブポルフィリンの化学Kitano, Masaaki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19516号 / 理博第4176号 / 新制||理||1600(附属図書館) / 32552 / 京都大学大学院理学研究科化学専攻 / (主査)教授 大須賀 篤弘, 教授 丸岡 啓二, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
13 |
Studies on Palladium-Catalyzed Reactions of Aryl Chlorides with Lewis Acidic Boron or Organosilicon Reagents / ルイス酸性を有するホウ素反応剤や有機ケイ素反応剤を用いたパラジウム触媒による塩化アリールの変換反応に関する研究Yamamoto, Yutaro 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20205号 / 理博第4290号 / 新制||理||1616(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 大須賀 篤弘, 教授 丸岡 啓二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
14 |
Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compoundsThorpe, Steven Brandon 03 May 2012 (has links)
The first successful synthesis and isolation of a boronic acid was reported in 1860 by Frankland in the pursuit of novel organometallic compounds. For more than a century, further studies of boronic acids were sparsely published. Suzuki and Miyaura jumpstarted the field in 1979 with an innovative carbon-carbon bond forming reaction employing an organoboronic acid and a carbon halide under palladium catalysis. Indeed, the Nobel Prize in Chemistry was awarded to Professor Akira Suzuki, along with Professors Richard Heck and Ei-ichi Negishi, in 2010 for their important contributions in palladium-catalyzed cross-coupling chemistry. Over the last 30 years, reports on organoboron compounds have increased exponentially. This dissertation describes the author's contributions to the development of preparative methods for organoboronic acid derivatives using transition metal-catalyzed reactions of diboron reagents.
A unique "mixed" diboron reagent was developed (PDIPA diboron) that contains sp2- and sp3-hybridized boron atoms, unambiguously confirmed by X-ray crystallography. PDIPA diboron is sufficiently activated internally through a dative-bonding amine to selectively transfer the sp2-hybridized boron regioselectively, in the presence of copper, to electron deficient alkenes including α,β-unsaturated ketones, esters, amides, aldehydes, and nitriles to provide the corresponding boratohomoenolates. A unique β,β-diboration of an α,β-acetylenic ketone was also discovered.
The scope of PDIPA diboron reactions was then expanded to a set of substrates with a more complex structural backbone. Allenoates are α,β,γ-unsaturated esters with orthogonal pi systems, which pose several possible difficulties with the regioselectivity of addition, not to mention known isomerizations catalyzed by copper. However, we successfully installed the boron moiety regioselectively on the β-carbon of a variety of allenoates, providing a vinyl boronic ester, and also observed exclusive formation of the (Z)-isomer from racemic starting materials. The resulting vinyl boronic ester was then shown to be an excellent Suzuki-Miyaura cross-coupling partner, affording a diastereopure, trisubstituted alkene in quantitative yield.
Commercially available bis(pinacolato)diboron has shown remarkable stability towards hydrolysis and autoxidation. Using this reagent, we developed a copper- and amine-catalyzed boration protocol performed entirely in water and open to air. Using only 1 mol% copper, extraordinary activity was observed. UV-Vis, 11B NMR, and solvent kinetic isotope experiments were employed to gain insight into the mechanism, which showed the possibility of autocatalysis. Attempts to control stereoselectivity were not successful, although these results were rationalized by a dynamic catalyst structure. / Ph. D.
|
15 |
Borylations and Silylations of Alkenyl and Alkynyl Carbonyl Compounds Employing a Mild and Environmentally Friendly Cu(II) CatalystCalderone, Joseph Anthony III 25 April 2014 (has links)
An environmentally friendly, operationally simple copper-amine catalyst system is disclosed. Using this catalyst system, electron deficient alkenes and alkynes with diverse functional groups are borylated and silylated in high yields and with short reaction times. In the case of electron deficient alkynes the identity of the electron withdrawing group controlled diastereoselectivity. Esters and amides exclusively form E-product, while aldehydes and ketones favor Z-product. Mechanistic insights into the catalytic cycle as well as origin of diastereoselectivity are discussed. / Master of Science
|
16 |
Development of Novel, Regioselective Borylation ProtocolsSnead, Russell Franklin 11 September 2018 (has links)
Organoboron compounds are highly valued synthetic intermediates due to their diverse array of reactivity, which is often utilized in the synthesis of valuable organic molecules. For this reason, there is significant interest in the development of novel borylation protocols, especially those whose products are suitable for further synthetic transformations towards valuable classes of compounds. Research in organoboron synthesis has been geared heavily toward transition metal-catalyzed addition to double and triple bonds, though an increasing number of publications detail transition metal-free borylation techniques involving substrate-mediated activation of a diboron reagent. This dissertation describes the author's contributions to the development of both a transition metal-catalyzed diboration and a transition metal-free protoboration.
A transition metal-free diboration of alkynamides is described in Chapter 1 which uses the unsymmetrical, differentially protected diboron reagent, pinBBdan. The method installs both boron moieties in a regio- and stereoselective fashion. The products have synthetic value because they are shown to have chemoselectivity in downstream cross-coupling reactions; chemoselectivity is made possible by to the significant difference in Lewis acidity of the pinacol and diaminonapthalene-protected boron centers. This method allows for facile synthesis of tetrasubstituted alkenes with a set geometry about the double bond.
A protoboration of allenes employing a Cu(II) catalyst under aqueous and atmospheric conditions is described. Though Cu(I)-catalyzed allene protoboration is well-described in the literature, this is the first report of an analogous Cu(II)-mediated process. The selectivity of the reaction is ligand-controlled, and moderate to good regioselectivities and yields can be achieved through use of a triphenylphosphine as ligand. The method is an environmentally friendly and facile means by which to borylate a challenging cumulated substrate. / Ph. D. / Organoboron compounds are valuable because of their ability to undergo a wide variety of chemical transformations, and they are often used as intermediates in the synthesis of challenging target molecules. In order for this reactivity to be exploited, methods must exist for the efficient synthesis of the desired boron-containing compound. This dissertation describes the author’s contributions to the development of two new methods by which to synthesize organoboron products. The first method involves installation of two differently ligated boron moieties onto an alkynamide substrate to produce a single, uncommon trans isomer as product. A synthetic application of these diboration products is described. The second method involves installation of a single boron moiety into allenes. Though the same overall transformation has been achieved in the literature with use of highly air-sensitive catalysts and organic solvents, the described method entails use of air-stable CuSO4 as catalyst and water as solvent. Therefore, the method is operationally simple and environmentally friendly relative to previously described methods.
|
17 |
Development of Transition Metal-Catalyzed Borylation Protocols using Symmetrical and Unsymmetrical Diboron ReagentsPeck, Cheryl Lynne 10 November 2017 (has links)
The versatility of organoboron compounds has been demonstrated by their use as synthetic intermediates and more recently in therapeutic applications since the FDA approval of Velcade©. As a result, transition metal-catalyzed protocols to incorporate boron reagents into unsaturated compounds have been extensively researched. While an abundance of literature protocols have been reported, the majority utilize harsh reaction conditions in combination with expensive reagents. This dissertation discloses the author’s contributions to the development of efficient, cost-effective, and operationally simple transition metal-catalyzed borylation protocols with alkynes and diboron reagents.
An open-to-air copper(II)-catalyzed aqueous borylation protocol of alkynoates and a symmetrical diboron reagent is reported. Conjugate addition of the boryl-copper species to the electrophilic β-carbon provided β-boryl-α,β-unsaturated esters in moderate to excellent yields. Exclusive (Z)-stereochemistry was confirmed by nOe experiments. The resulting vinyl boronate esters are useful cross-coupling partners.
The scope of the aqueous β-borylation protocol was extended to the unsymmetrical diboron reagent, pinB-Bdan. This alternative protecting group has emerged as an orthogonal protecting group and alters the reactivity of the boron moiety. Activation of the pinacol moiety to form the Lewis acid-base adduct allowed for the chemoselective transfer of the 1,8- diaminonapthalene moiety to the β-carbon.
An alternative novel synthesis of vinyl, allyl diboronate esters from propargylic alcohols has also been described. Formation of a leaving group in-situ with a palladium- and coppercatalyzed protocol can lead to several competing reaction pathways and the formation of multiple products. Fortunately, the resulting vinyl, allyl diboronate esters were stereoselectively synthesized in moderate GC yields despite significate decomposition during purification, as confirmed by stability studies. The terminal diboration of allenes was previously the only reported method for the synthesis of vinyl, allyl diboronate esters. / Ph. D. / The unique properties of organoboron compounds allow them to be used as synthetic intermediates and as drugs targets. This dissertation discloses three environmentally friendly and simple methods to incorporate boron into alkynes using transition metal catalysts. In particular, alkynoates were successfully borylated under copper(II)-catalyzed aqueous conditions using symmetrical and unsymmetrical diboron reagents. Propargylic alcohols were also borylated using bimetallic conditions to afford vinyl, allyl diboronate esters, which were previously hard to obtain.
|
18 |
Synthesis of Organoboron Compounds via Reductive Carbon-Carbon Bond Cleavage by Means of Electron Injection / 電子注入による還元的炭素-炭素結合切断を利用した有機ホウ素化合物の合成Fukazawa, Mizuki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25138号 / 理博第5045号 / 新制||理||1719(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 畠山 琢次, 教授 松永 茂樹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
19 |
Metal-Catalyzed Formation and Transformations of Carbon-Boron BondsNelson, Amanda Kay 01 December 2016 (has links)
Our research seeks new methods for functionalizing organic small molecules using organoboronic derivatives as a versatile handle for late-stage manipulations. Metal-catalyzed formation of new carbon-boron bonds and their subsequent transformations are highlighted.
Among the myriad of unsaturated substrates for conducting borylation reactions, allenes have received minimal attention. These substrates are uniquely advantageous given that diboration results in the formation of both allylic and vinylic boronates. Orthogonal reactivity of the sp2 and the sp3 C-B bonds can allow for chemoselective transformations. However, oxidation of the carbon-boron bond is one example in which the conditions are unselective. To address this shortcoming, a platinum catalyst was developed for the diboration of 1,1-diaryl allenes with a differentially protected diboron reagent, pinB-Bdan. The reaction proceeds regioselectively in high yields to furnish olefins bearing a vinylic Bpin and an allylic Bdan moiety. The subsequent chemoselective transformation of each boron center was demonstrated.
Methods for preparing 1,8-diaminonaphthalene protected vinylboronates conjugated to carbonyl groups are severely limited. A simple and efficient protocol was developed for carrying out an environmentally friendly copper(II)-catalyzed beta-borylation of alkynoates and alkynamides in water and open-to-air. Following the discriminative activation of the more Lewis acidic pinacol protected boron center in pinB-Bdan, a regio-, stereo- and chemoselective beta-borylation of acetylenic substrates delivers (Z)-beta-boryl enoates and primary, secondary, and tertiary enamides under very mild conditions.
As an inexpensive and earth abundant metal, catalysts based on copper are highly desirable. An international collaborative project to develop a copper-catalyzed cross-coupling reaction of beta-boryl carbonyl compounds was explored. Preliminary results found these substrates to be either unstable towards or unreactive under the reactions conditions screened. / Ph. D. / The very basis of everything in existence is the atom. The idiosyncratic arrangements and interactions of atoms confer distinctive physical properties which give rise to the biological processes of organic lifeforms or the diverse characteristics of inorganic substances, like salts and minerals. In organic chemistry, the carbon-based backbone of the compound is decorated with socalled functional groups, which govern the physical or biological properties of the molecule. Building the unique structural arrangement of functional groups within a pharmaceutical, for example, requires multi-step reaction sequences and purifications to deliver the desired product. Thus, their assembly must be extremely selective and highly efficient to yield the final compound in useable amounts. The overarching goal of our work is to develop such methods for building complex small molecules from very simple starting materials. The carbon—boron bond is a particularly versatile tool in synthetic chemistry because it offers direct access to a myriad of different functional groups. We utilize the unique properties of boron, a tunable semi-metallic element, in the formation and transformation of carbon—boron bonds with divergent reactivity.
Catalysis offers a modern approach to enhance the selectivity and sustainability of preparative organic chemistry. Energy input is needed to make and break chemical bonds. Conducting the reaction at an elevated temperature, for example, is a conventional way to provide the energy necessary for molecules to come together. Conversely, metal catalysts can be cleverly designed to lower the potential energy barrier, which gives rise to new pathways for carrying out chemical transformations. Moreover, incredibly small amounts of the metal is sufficient because a catalyst propagates the process in a cyclic and repetitive fashion. In this work, metal catalysts were optimized to form carbon—boron bonds from diboron reageants containing two different boron centers. Taking advantage of the orthogonal reactivity of each boron allowed for the selective installation of functional groups in subsequent transformation reactions.
|
20 |
Réaction de nitration en continu pour la synthèse d’un principe actif pharmaceutique : fonctionnalisation d’hétérocycles borés obtenus par borylation électrophile / Continuous nitration reaction for the synthesis of an active pharmaceutical ingredient : functionnalisation of boron heterocycles synthetised by electrophilic borylationCharbonnier, Jean-Baptiste 08 June 2018 (has links)
La fluidique est un outil offrant des avantages industriels notamment en termes de sécurité grâce à un meilleur contrôle thermique mais aussi une diminution des risques due à un engagement de volumes faibles. Cette technologie permet des réactions chimiques plus efficaces grâce à un système plus homogène qui impacte les rendements, la sélectivité ou encore la quantité de réactifs nécessaire. Aujourd’hui, la production de principes actifs pharmaceutiques est réalisée majoritairement en procédé batch. Ainsi, dans une première partie, la microfluidique a été appliquée à la synthèse d’un principe actif pharmaceutique. Les diverses étapes réactionnelles ainsi que les paramètres physiques du système ont été optimisés avec l’utilisation de micromélangeurs. Un procédé multi-étapes a été développé avec une productivité atteignant 100 g.h-1. Des productions ont été réalisées validant les tests préliminaires ainsi que la possibilité de production du principe actif pharmaceutique en continu.Les dérivés du bore sont quant à eux des intermédiaires réactionnels couramment utilisés pour leurs réactivités en synthèse organique. Ainsi, dans une seconde partie, la réaction de borylation électrophile a été étudiée, et plus spécifiquement la synthèse des oxa et des azaborinines grâce au complexe diisopropylamine borane (DIPAB) utilisé comme agent de borylation. Ces dernières molécules ont ensuite été fonctionnalisées grâce à des réactions d’oxydation, d’amination ou d’halogénation. / Fluidic devices offer industrial advantages especially in terms of security due to a better thermal control and a minimization of risks with lower volumes involved. This technology increases chemical reaction efficiencies thanks to a more homogeneous system which affects yields, selectivity and reagent quantities. Nowadays, pharmaceutical active principles are still predominantly produced using batch. Thus, in a first part, microfluidic has been applied to the synthesis of an active pharmaceutical ingredient. Each reaction step as well as the physical parameters of the system have been optimized by using a micromixer. A multi-step process has been developed with a productivity up to 100 g.h-1. Productions have been realized thereby validating preliminary studies including the possibility to produce the active pharmaceutical ingredient.Boron derivatives are chemical intermediates commonly used in organic synthesis for their reactivity. In a second part, electrophilic borylation reaction has been studied with the synthesis of oxa and azaborinins compounds as targets and the use of diisopropylamine borane complex (DIPAB) as a borylation agent. These molecules have then been functionalized through the use of oxidation, amination or halogenation reactions.
|
Page generated in 0.1441 seconds