• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 18
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vanadium Dioxide Based Radio Frequency Tunable Devices

Pan, Kuan-Chang January 2018 (has links)
No description available.
12

Dual-Polarized Highly Folded Bowtie Antenna with Slotted Self-Grounded Structure for Sub-6 GHz 5G Applications

Alibakhshikenari, M., Virdee, B.S., See, C.H., Shukla, P., Moghaddam, S.M., Zaman, A.U., Shafqaat, S., Akinsolu, M.O., Liu, B., Yang, J., Abd-Alhameed, Raed, Falcone, F., Limiti, E. 26 September 2021 (has links)
Yes / In this paper, a novel dual-polarized highly-folded self-grounded Bowtie antenna that is excited through I-shaped slots is proposed for applications in sub-6GHz 5G multiple-input-multiple-output (MIMO) antenna systems. The antenna consists of two pairs of folded radiation petals whose base is embedded in a double layer of FR-4 substrate with a common ground-plane which is sandwiched between the two substrate layers. The ground-plane is defected with two I-shaped slots located under the radiation elements. Each pair of radiation elements are excited through a microstrip line on the top layer with RF signal that is 180° out of phase with respect to each other. The RF signal is coupled to the pair of feedlines on the top layer through the I-shaped slots from the two microstrip feedlines on the underside of the second substrate. The proposed feed mechanism gets rid of the otherwise bulky balun. The Bowtie antenna is a compact solution with dimensions of 32×32×33.8 mm3. Measured results have verified that the antenna operates over a frequency range of 3.1–5 GHz and exhibits an average gain and antenna efficiency in the vertical and horizontal polarizations of 7.5 dBi and 82.6%, respectively.
13

A Conductor Backed, Coplanar Waveguide Fed, Linear Array Comprised of Bowtie Antennas for a Varactor Tuned Radiation Pattern

Sumanam, Satya Parthiva Sri 14 September 2016 (has links)
No description available.
14

A novel optical bio-chemical sensor based on hybrid nanostructures of Bowtie nanoantennas and Fabry-Perot Interferometer / Un nouveau capteur optique et biochimique basé sur des nanostructures hybrides de nanoantennes papillons et d'interféromètres de Fabry-Perot

Liu, Huanhuan 20 November 2013 (has links)
Aujourd'hui, la préoccupation croissante pour l'analyse environnementale et le contrôle de la qualité des aliments, ainsi que les besoins médicaux tels que le diagnostic rapide en cas de situations d'urgence, entraîne un besoin croissant de nouvelles générations de capteurs chimiques et biologiques. Ces dispositifs doivent avoir une haute sensibilité et fiabilité, ils doivent permettre une détection spécifique de molécules et une détection parallèle de différentes molécules, tout en étant bas coût, portables, rapides et faciles à utiliser. Ainsi, une tendance générale se porte sur les capteurs biochimiques intégrés sur puce, sans marqueur, et compatibles avec les procédés standard des micro-technologies. Les dispositifs diélectriques photoniques à base de silicium poreux et les nanostructures métalliques à résonances plasmoniques sont de bons candidats pour répondre aux exigences ci-dessus. Le silicium poreux est un matériau biocompatible, avec une énorme surface spécifique entrainant un gain de la sensibilité de plusieurs ordres de grandeur par rapport aux matériaux massifs ; en outre, son indice de réfraction et son épaisseur peuvent être facilement ajustés, permettant la réalisation d'une grande variété de dispositifs photoniques. Les nanostructures métalliques offrent un fort confinement et une forte amplification du champ électromagnétique dans des régions sub-longueur d'onde, ce qui conduit à des sensibilités élevées ; combinées avec d’autres mécanismes de détection comme la fluorescence, le Raman ou la spectroscopie IR, elles ont déjà démontré un gain important du potentiel pour la détection. La réalisation d'un dispositif hybride combinant ces deux éléments est très intéressant, car il peut offrir les avantages des deux éléments ; la structure photonique pourrait aussi façonner la résonance plasmonique pour le développement de dispositifs ultrasensibles à largeur de raie de résonance étroite tout en ayant une profondeur de détection accrue. Dans ce contexte, l'objectif de cette thèse est d'explorer les défis de cette solution en considérant la conception, la réalisation, la caractérisation et le potentiel de dispositifs hybrides photoniques/plasmoniques qui exploitent le couplage entre la résonance plasmonique de surface localisée d'un réseau d'antennes papillon et les modes photoniques d'un interféromètre en silicium poreux. / Nowadays, the increasing concern for environmental analysis and food quality control, as well as medical needs such as fast diagnosis in case of emergency events, leads to a growing need for new generations of chemical and biological sensors. These devices should have high sensitivity and reliability, perform specific detection of molecules and enable multiple parallel sensing, while being cheap, portable, fast and easy to use. Thus, a general trend tends towards bio-chemical sensors which are on-chip integrated, label-free, and compatible with standard micro-technologies. Photonic dielectric devices based on porous silicon and metallic nanostructures based on plasmon resonances are good candidates to fulfill the above requirements. Porous silicon is a biocompatible material, with a huge specific surface providing a sensitivity enhancement by several orders of magnitude compared to bulk materials; furthermore, its refractive index and thickness can be easily tuned, enabling for the realization of a large variety of photonic designs. Metallic nanostructures provide high confinement and strong field enhancement in sub-wavelength regions, leading to high sensitivities; combined with fluorescence or other sensing mechanisms such as Raman or IR spectroscopy, they have already demonstrated increased sensing potential. The realization of a hybrid device combining both elements would be highly interesting, since it could yield the advantages of both elements, and the photonic structure could shape the plasmonic resonance to develop ultrasensitive devices with narrow resonance linewidth and increased sensing depth. In this context, we realized and studied a novel hybrid photonic / plasmonic device exploiting the coupling between the surface plasmon resonance of a bowtie nano - antenna (NAs) array and the photonic modes of porous silicon (PSi) interferometer. We designed and fabricated a NAs array with resonance wavelength ~ 1.3μm on a homogeneous PSi interferometer. A thin spacing silica layer with controllable density protects the pores of PSi layer and provides a smooth surface for the fabrication of NAs. The coupling mechanisms of two elements - NA array and interferometer, are studied with 2 models, which are interferometer approach and resonator approach. The interferometer approach is focused on studying the influence of NAs array as a homogeneous layer on the fringes shift of the interferometer. For resonator approach, the coupled mode theory is applied. With these models, strong coupling between both elements are discovered: splitting. In the case of viii smaller environment variation, the hybrid device gains 5-10 fold sensitivity enhancement vs. 2 elements alone. The controllable SiO2 layer allows us to sense the index variation within PSi interferometer. This opens a route towards double parallel sensing. The development of the theoretical models under different environment is ongoing, which is expected to utilize the strong coupling for the sensing. A further investigation of the sensing potential of the hybrid device would be expected. And the 2 elements constituting the hybrid structure – the interferometer and the NA array – could be modified in order to enlarge the study to a wider family of devices with greater properties and performances. This work was performed within the framework of the program “Groups of Five Ecoles Centrales” between China Scholarship Council (CSC) and Lyon Institute of Nanotechnologies (INL, CNRS UMR 5270). The project has been supported by the Nanolyon technology platform at INL.
15

Magnetic Antennas for Ground Penetrating Radar

Bellett, Patrick Thomas Unknown Date (has links)
The concept for a novel new antenna design is presented and investigated for application to ground penetrating radar (GPR). The proposed new antenna design is called the shielded magnetic bowtie antenna (MBA). As the name suggests, it is predominately constructed from a bowtie-shaped volume of magnetic material that is fed from the centre of the structure by a small magnetic loop antenna. This thesis develops the magnetic antenna concept and investigates its potential for GPR predominately through numerical modelling. However, a significant part of the investigation concentrates on validating the numerical modelling technique developed to study the shielded MBA by comparing the results with measurements obtained from a scale model constructed to operate in the watertank antenna test facility, a controlled environment for GPR antenna research. The broadband properties required for GPR antennas are achieved uniquely with the shielded MBA design by a combination of the antenna shape being defined in terms of angles and an inherent magnetic loss mechanism within the antenna material structure. The design also affords an intrinsically placed antenna shield that has the potential for mitigating problems typically experienced with shielding electric dipole antennas. Antenna shielding is an important consideration for GPR antenna designers, especially given the recent US government (FCC) changes that restrict radiated energy emissions within the regulated spectrum used by GPR systems. In addition to providing the intended directional radiation properties, the magnetic antenna shield also provides an elegant solution for a low-loss wideband balun, allowing the antenna to be effectively fed from an unbalanced coaxial transmission line. Other important aspects of the proposed design are discussed in relation to the requirements for GPR antennas. Numerical models of the magnetic antenna concept show encouraging bandwidth results. For example, from a simple comparison with an equivalent sized electric bowtie antenna model, the effective gain bandwidth of the magnetic antenna is found to be at least 3-octaves compared to approximately 2-octaves for the electric bowtie. The shielded magnetic antenna achieves a gain of approximately 2 dB, compared to 5 dB for the unshielded electric bowtie antenna. However, it is noted that the magnetic antenna models contain significantly more loss compared to the electric bowtie model. The shielded MBA design emerged from a theoretical investigation of electrically small GPR antennas, given that the initial thesis objective was to investigate ways of improving low frequency GPR antennas. In general, GPR systems are operated with electric dipole antennas, such as the electric bowtie. Interestingly, the electrically small antenna investigation revealed that only the small magnetic loop (i.e., magnetic dipole) antenna can be constructed to approach, arbitrarily closely, the fundamental bandwidth limit for small antennas. This surprising and counter intuitive result is shown to be theoretically achievable with the use of magnetic materials. For the small loop antenna, energy stored within the antenna structure can be avoided by filling the antenna sphere with a perfect magnetic material. This theoretical argument is discussed and supported by numerically modelled results. The electrically small antenna investigation presented in this thesis extends to include the influence that proximity to a lossy dielectric half-space has, on improving the antenna impedance bandwidth. This investigation is of general interest for GPR; it is performed numerically and supported by measurements conducted on an experimental loop antenna situated at various heights above the ground. These results provide support for the hypothesis that a magnetic antenna may experience less influence from near-field changes in the dielectric properties of the ground compared to the equivalent sized electric field antenna.
16

Fiber-integrated nano-optical antennas and axicons as ultra-compact all-fiber platforms for luminescence detection and imaging down to single nano-emitters / nano-antennes et axicons intégrés sur fibres optiques comme plateformes fibrées ultra-compactes pour la détéction et l'imagerie locale de luminescence jusqu'à l'émetteur unique n

Xie, Zhihua 05 July 2016 (has links)
Ma thèse concerne le développent de systèmes ultra compactes auto-alignés et à faible coût intégréssur fibre optique monomode pour la collection fibrée de la luminescence locale. Dans un premiertemps, un axicon fibré auto-aligné (AXIGRIN) est proposé permettant de fournir la première imagerierésolue ultra-compacte fibrée de quantum dots PbS infrarouges. Ensuite, la première nano-imagerie(système entièrement fibrée) de quantum dots PbS uniques est réalisée à l’aide d’une nano-antenneà ouverture bowtie intégrée sur pointe fibrée. Enfin, le concept d’≪antenne cornet≫ nano-optiqueest proposé pour le couplage direct et efficace de la luminescence excitée par rayons X à une fibreoptique, dans le but de générer les premiers capteurs et dosimètres fibrés à rayons X. / My thesis is devoted to develop ultra-compact, plug-and-play and low-cost single-mode optical fibersystems for in-fiber luminescence collection. First, a new fiber self-aligned axicon is proposed toprovide the first resolved infrared fluorescence imaging of PbS quantum dots in far field. Then,all-fiber near-field imaging of single PbS quantum dots is achieved by double resonance bowtienano-aperture antenna (BNA) with nanometer resolution. Finally, the concept of fiber nano-opticalhorn antenna is proposed for in-fiber X-ray excited luminescence out-coupling, with the purpose ofgenerating the first generation of fiber X-ray sensors and dosimeters
17

Analýza dat ze sekvenování příští generace ke studiu aktivity transposonů v nádorových buňkách / Analysis of NGS data for study of transposon activity in cancer cells

Hrazdilová, Ivana January 2013 (has links)
Theoretical part of this diploma thesis gives a brief characteristic of human mobile elements (transposons), which represents nearly 50% of human genome. It provides basic transposon clasification and describes types of transposons present in hunam genome, as well as mobilization, activation and regulation mechanisms. The work also deals with the domestication of transposons, describes the ways in which TE contribute to DNA damage and summarizes the diseases caused by mutagenic activity of transposons in the human genome. Conclusion of theoretical part describes next-generation sequencing technologies (NGS). As practical part, data from RNA-seq experimet were analyzed in order to compare differen transposon activity in normal and cancer cells from prostate and colorectal tissues. As like as publicly available sophisticated tools (TopHat), new scripts were created to analyze these data. The results show that cancer cells exhibit overexpression of transposons. This corresponds with the published results and suggests a connection of transposon activation with cancer development.
18

Analýza a řízení rizik technologických etap výstavby zděných konstrukcí / Risk analysis and management of technological stages of construction

Sáček, Petr January 2016 (has links)
This thesis deals with the analysis and evaluation of quality, environmental, and security risks, hazards and application of appropriate methodology to a particular construction project. For an application is selected the key construction technology - walling. Diploma thesis establishes a framework for risk management on the basis of established integrated management system (IMS) defines the objectives and mechanisms in controlling adherence to standards, evaluation of business risks, defining risk management strategies, the draft risk management procedures, monitoring their functioning, assessing their performance and any improvement and support the process of supplying the required information.

Page generated in 0.022 seconds