71 |
Braggovy mřížky v optických vláknech / Bragg gratings in optical fibersUrban, František January 2014 (has links)
Thesis focuses on the principles and properties of the tilted Bragg fiber gratings. Two models of the principal cladding mode behaviour are proposed and ther respective results compared with experimental data. The experimental setup for the preparation of the tilted gratings is described. The thesis shows the evaluation of the gratings parameters for the set of prepared gratings. Application of the tilted gratings in the sensors is discussed
|
72 |
Metoda pro zvýšení přesnosti měření optického frekvenčního spektra laditelnými optickými filtry / Design of the method to increasing of accuracy of the tunable optical filter optical spectra measurementJelínek, Michal January 2016 (has links)
The thesis deals with the method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The thesis starts with the selection of the proper optical filter that is suitable for accurate light spectrum measurement. The selected filter was then used for the design and realization of the measurement system for the inspection of the fibre Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. Advanced tests were conducted on nuclear power plant’s containment shape deformation measurement in Temelin.
|
73 |
Optical Fiber sensing of acoustic waves using overlapping FBGsHole, Erik Lillebø January 2019 (has links)
The objective of this thesis was to investigate if an optical fiber sensing method with the use of two overlapping fiber Bragg gratings to measure Lamb wave $S_0$ modes in a steel plate, and how it would compare to traditional PZT transducers. A solution was proposed where the use of an optical fiber sensing system was built and took advantage of the strain dependence of a fiber Bragg grating mounted to a steel plate. Together with an overlapping reference fiber Bragg grating, the system can translate strain to light intensity. A method of controlling the Bragg wavelength of the reference fiber Bragg grating to optimize the overlap between the two fiber Bragg gratings, enabling the system to compensate for drift in the sensing fiber Bragg grating. Testing of the system was performed and yielded promising results, being able to measure the Lamb wave signal from the steel plate. The system showed some sensitivity limitations and signal to noise ratio, as well as the software created to compensate for the drift. With the improvement proposed for further work with the system in terms of improving the system's sensitivity, signal to noise ratio and drift control should make the system able to perform at levels as traditional PZT transducers.
|
74 |
Structural health monitoring with fiber Bragg grating sensors embedded into metal through ultrasonic additive manufacturingChilelli, Sean Kelty 23 December 2019 (has links)
No description available.
|
75 |
Peculiarities of the Thermo-Optic Coefficient at High Temperatures in Fibers Containing Bragg GratingsFedin, Igor 15 August 2011 (has links)
No description available.
|
76 |
Femtosecond-Laser-Enabled Fiber-Optic Interferometric DevicesYang, Shuo 11 November 2020 (has links)
During the past decades, femtosecond laser micro-fabrication has gained growing interests owing to its several unique features including direct and maskless fabrication, flexible choice of materials and geometries, and truly three-dimensional fabrication. Moreover, fiber-optic sensors have demonstrated distinct advantages over traditional electrical sensors such as the immunity to electromagnetic interference, miniature footprint, robust performance, and high sensitivity. Therefore, the marriage between femtosecond laser micro-fabrication and optical fibers have enabled and will continue to offer vast opportunities to create novel structures for sensing applications. This dissertation focuses on design, fabrication and characterization of optical-fiber based interferometric devices for sensing applications. Three novel devices have been proposed and realized, including point-damage-based Fiber Bragg gratings in single-crystal sapphire fibers, all-sapphire fiber-tip Fabry-Pérot cavity, and in-fiber Whispering-Gallery mode resonator / Doctor of Philosophy / Optical fibers are an optical platform with cylindrical symmetry with overall diameter typically within 50 to 500 μm. The miniature footprint and large aspect ratio make it attractive in sensing applications, where intrusion, flexibility, robustness and small size are key design parameters. Beyond that, fiber-optic sensors also possess distinct operational advantages over traditional electrical sensors such as high sensitivity, immunity to electromagnetic interference (EMI), and fully distributed deployment. Owing to the above advances, fiber-optic sensors have been one of the key technologies in the broader sensing field for the past decades. However, the unique cylindrical shape of optical fiber makes it naturally less compatible to those well-developed fabrication technologies in the current sophisticated semiconductor industry. During the past decades, the possibility of three-dimensional (3D) writing inside transparent materials with tightly focused ultrafast laser pulses has attracted attention widely among the academy as well as the industry. Therefore, the marriage between ultrafast laser micro-fabrication and optical fibers have enabled and will continue to offer vast opportunities to create novel structures for sensing applications. This dissertation focuses on design, fabrication and characterization of optical-fiber based interferometric devices for sensing applications. Three novel devices have been proposed and realized, including point-damage-based Fiber Bragg gratings in single-crystal sapphire fibers, all-sapphire fiber-tip Fabry-Pérot cavity, and in-fiber Whispering-Gallery mode resonator.
|
77 |
Theoretical Study of Laser Beam Quality and Pulse Shaping by Volume Bragg GratingsKaim, Sergiy 01 January 2015 (has links)
The theory of stretching and compressing of short light pulses by the chirped volume Bragg gratings (CBG) is reviewed based on spectral decomposition of short pulses and on the wavelength-dependent coupled wave equations. The analytic theory of diffraction efficiency of a CBG with constant chirp and approximate theory of time delay dispersion are presented. Based on those, we performed comparison of the approximate analytic results with the exact numeric coupled-wave modeling. We also study theoretically various definitions of laser beam width in a given cross-section. Quality of the beam is characterized by the dimensionless beam propagation products (?x???_x)?? , which are different for each of the 21 definitions. We study six particular beams and introduce an axially-symmetric self-MFT (mathematical Fourier transform) function, which may be useful for the description of diffraction-quality beams. Furthermore, we discuss various saturation curves and their influence on the amplitudes of recorded gratings. Special attention is given to multiplexed volume Bragg gratings (VBG) aimed at recording of several gratings in the same volume. The best shape of a saturation curve for production of the strongest gratings is found to be the threshold-type curve. Both one-photon and two-photon absorption mechanism of recording are investigated. Finally, by means of the simulation software we investigate forced airflow cooling of a VBG heated by a laser beam. Two combinations of a setup are considered, and a number of temperature distributions and thermal deformations are obtained for different rates of airflows. Simulation results are compared to the experimental data, and show good mutual agreement.
|
78 |
Montage et caractérisation d’un système de spectroscopie Raman accordable en longueur d’onde utilisant des réseaux de Bragg comme filtre : application aux nanotubes de carboneMeunier, François 04 1900 (has links)
La spectroscopie Raman est un outil non destructif fort utile lors de la caractérisation de matériau. Cette technique consiste essentiellement à faire l’analyse de la diffusion inélastique de lumière par un matériau. Les performances d’un système de spectroscopie Raman proviennent en majeure partie de deux filtres ; l’un pour purifier la raie incidente (habituellement un laser) et l’autre pour atténuer la raie élastique du faisceau de signal. En spectroscopie Raman résonante (SRR), l’énergie (la longueur d’onde) d’excitation est accordée de façon à être voisine d’une transition électronique permise dans le matériau à l’étude. La section efficace d’un processus Raman peut alors être augmentée d’un facteur allant jusqu’à 106. La technologie actuelle est limitée au niveau des filtres accordables en longueur d’onde. La SRR est donc une technique complexe et pour l’instant fastidieuse à mettre en œuvre.
Ce mémoire présente la conception et la construction d’un système de spectroscopie Raman accordable en longueur d’onde basé sur des filtres à réseaux de Bragg en volume. Ce système vise une utilisation dans le proche infrarouge afin d’étudier les résonances de nanotubes de carbone. Les étapes menant à la mise en fonction du système sont décrites. Elles couvrent les aspects de conceptualisation, de fabrication, de caractérisation ainsi que de l’optimisation du système. Ce projet fut réalisé en étroite collaboration avec une petite entreprise d’ici, Photon etc. De cette coopération sont nés les filtres accordables permettant avec facilité de changer la longueur d’onde d’excitation. Ces filtres ont été combinés à un laser titane : saphir accordable de 700 à 1100 nm, à un microscope «maison» ainsi qu’à un système de détection utilisant une caméra CCD et un spectromètre à réseau.
Sont d’abord présentés les aspects théoriques entourant la SRR. Par la suite, les nanotubes de carbone (NTC) sont décrits et utilisés pour montrer la pertinence d’une telle technique. Ensuite, le principe de fonctionnement des filtres est décrit pour être suivi de l’article où sont parus les principaux résultats de ce travail. On y trouvera entre autres la caractérisation optique des filtres. Les limites de basses fréquences du système sont démontrées en effectuant des mesures sur un échantillon de soufre dont la raie à 27 cm-1 est clairement résolue. La simplicité d’accordabilité est quant à elle démontrée par l’utilisation d’un échantillon de NTC en poudre. En variant la longueur d’onde (l’énergie d’excitation), différentes chiralités sont observées et par le fait même, différentes raies sont présentes dans les spectres. Finalement, des précisions sur l’alignement, l’optimisation et l’opération du système sont décrites. La faible acceptance angulaire est l’inconvénient majeur de l’utilisation de ce type de filtre. Elle se répercute en problème d’atténuation ce qui est critique plus particulièrement pour le filtre coupe-bande. Des améliorations possibles face à cette limitation sont étudiées. / Raman spectroscopy is a useful and non-destructive tool for material characterization. It uses inelastic light scattering interaction with matter to investigate materials. The major part of the performances in a Raman spectroscopy system comes from two light filter units: the first shapes the light source (usually a laser) and the other attenuates the elastic scattered light in the signal beam. In resonant Raman spectroscopy (RRS), the excitation energy (wavelength) is tuned to match an electronic transition of the sample. When in resonance, the Raman cross section is increased by a factor up to 106. Current RRS setups are limited by filtering devices technology. RRS is a complex technique which, for the moment, remains tedious to implement.
This master thesis presents the construction of a tunable Raman spectroscopy system based on volume Bragg gratings light filters. The setup is designed to operate in the near infrared region so as to study carbon nanotubes resonances. Steps leading to the operation of the system are described. They cover conceptualization, fabrication, characterization and optimisation of the setup. Collaboration with a local small company, Photon etc, led to the building of two new light filters that allow to tune easily the excitation wavelength. These filters have been adapted to work with a tunable titanium-sapphire laser (tunable from 700 to 1100 nm) and assembled with a homemade microscope and a detection system combining a CCD camera with a grating spectrometer.
This document is arranged as follow: First are presented the theoretical aspects surrounding RRS. Carbon nanotubes (CNT) are than described to illustrate the relevance of such technique applied to material science. Principles behind the use of the Bragg filters are described to be followed by a scientific paper in which the main results of this work are presented. These include the optical characterisation of the filters and measurements with the system. Low frequency limits of the system are demonstrated using a sulphur powder where the 27 cm-1 line is clearly resolved. The tunability of the setup is also demonstrated using a bulk carbon nanotube sample. By changing the excitation wavelength, different nanotube chiralities become resonant, leading to different signals in the Raman spectra. Finally, clarifications regarding the alignment, optimisation and operation of the system are described. Low angular acceptance has been found to be the main drawback of the system leading to attenuation problems especially critical for the notch filter. Possible improvements on this limitation are discussed.
|
79 |
[en] EFFECTS AND APPLICATIONS OF NON-HOMOGENEOUS STRAINS IN BRAGG GRATINGS / [pt] EFEITOS E APLICAÇÕES DE DEFORMAÇÕES NÃO HOMOGÊNEAS EM REDES DE BRAGGADRIANO FERNANDES PINHO 21 September 2005 (has links)
[pt] Redes de Bragg em fibras ópticas (RBF) são formadas por
modulações periódicas
introduzidas no índice de refração do núcleo de fibras
ópticas. Estes componentes
comportam-se como filtros espectrais de banda passante, ou
seja, quando iluminados por
um sinal óptico de banda larga, refletem apenas uma fina
fatia espectral de luz, cujo
centro, o comprimento de onda de Bragg, é proporcional ao
período espacial da
modulação no índice de refração. As RBF têm encontrado
aplicações importantes no
sensoriamento das mais diversas grandezas, sendo hoje
utilizadas em sistemas de
monitoramento para vários segmentos industriais, tais como
os setores de petróleo e gás,
construção civil e aeroespacial, que, estima-se, respondem
em conjunto por cerca de 70%
destas aplicações. Em diversas situações o sensoriamento
com RBF baseia-se em
medidas indiretas da grandeza de interesse, sendo
empregados mecanismos de
transdução que transformam variações do mensurando em
deformações na fibra óptica.
Nestes casos, um problema que deve ser tratado com atenção
é o acoplamento entre
temperatura e deformação, uma vez que as RBF são sensíveis
a estas duas variáveis. Não
raro, a alternativa é utilizar simultaneamente duas RBF
para obter-se a compensação de
temperatura na medida de deformação.
Este trabalho apresenta um estudo sobre deformações não
homogêneas em redes de
Bragg e discute aplicações de duas técnicas que podem ser
utilizadas como alternativas
para eliminar o efeito da temperatura no sensoriamento de
deformação com apenas uma
RBF. A primeira delas explora a birrefringência óptica
induzida na RBF por
carregamentos transversais à fibra óptica. A segunda
baseia-se nos efeitos sobre o
espectro refletido pela rede de Bragg quando submetida a
um campo de deformações
longitudinais não uniformes ao longo da direção axial da
fibra óptica. No trabalho são
apresentados protótipos e dispositivos que exploram tais
técnicas para a medida simultânea de pressão e
temperatura. Esses protótipos foram projetados com auxílio
de
ferramentas CAD e modelados utilizando-se o método de
elementos finitos em conjunto
com a teoria de modos acoplados da Rede de Bragg. As
previsões obtidas utilizando-se
estes modelos mostraram-se bastante próximas dos
resultados das implementações
experimentais dos protótipos, indicando que a metodologia
de modelagem desenvolvida
pode ser aplicada nos projetos de transdutores baseados
nas duas técnicas estudadas. / [en] Fiber Bragg gratings (FBG) are modulations in the
effective refractive index of
optical fibers, introduced in a small length along the
fiber core. Such components operate
as narrow band reflective filters, that is, when
illuminated by a broad-band light source,
they reflect a narrow spectral band centered at a specific
wavelength, the Bragg
wavelength. This wavelength is proportional to the spatial
period of the refractive index
modulation. Fiber Bragg gratings have find an increasing
number of applications as
sensors for different quantities, and today are being
employed as part of permanent, real
time monitoring systems in various industrial segments.
The oil and gas sector, together
with civil infrastructure and aeronautics and aerospace,
account for almost 70% of this
applications. In a number of situations, FBG sensing is
based on indirect measurements
of the quantity being monitored, and a transduction
mechanism is employed to transform
changes in the measured quantity in strain sensed by the
optical fiber. Since the FBG is
sensitive to strain and temperature, proper temperature
compensation is always
necessary. Usually, a second grating is employed to
simultaneously measure temperature
and strain, performing the required compensation.
This thesis presents a study on effects due to non-
homogeneous strains in the
Bragg grating and discusses application of two different
techniques, based on these
effects, to allow temperature compensated strain
measurement using a single FBG. The
first technique explores strain induced optical
birefringence when the fiber is loaded
transversely. The second technique is based on changes in
the spectral shape of the light
signal reflected by the grating when subjected to non
homogeneous axial strain fields.
Prototypes of pressure and temperature transducers based
on these techniques have been
developed. These prototypes have been designed by
employing CAD techniques and
modeled using the finite element method in conjunction
with the theory of coupled
modes for fiber Bragg gratings. Comparisons between
results provided by theoretical models and experimental
realizations of the prototypes are very close,
demonstrating that
the developed approach can be applied to design
transducers based on the discussed
techniques. Results obtained with the proposed pressure
and temperature sensors are also
encouraging indicating that the two techniques are
suitable for industrial applications.
|
80 |
Coupled Solitary Waves in Optical WaveguidesMak, William Chi Keung, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 1998 (has links)
Soliton states in three coupled optical waveguide systems were studied: two linearly coupled waveguides with quadratic nonlinearity, two linearly coupled waveguides with cubic nonlinearity and Bragg gratings, and a quadratic nonlinear waveguide with resonant gratings, which enable three-wave interaction. The methods adopted to tackle the problems were both analytical and numerical. The analytical method mainly made use of the variational approximation. Since no exact analytical method is available to find solutions for the waveguide systems under study, the variational approach was proved to be very useful to find accurate approximations. Numerically, the shooting method and the relaxation method were used. The numerical results verified the results obtained analytically. New asymmetric soliton states were discovered for the coupled quadratically nonlinear waveguides, and for the coupled waveguides with both cubic nonlinearity and Bragg gratings. Stability of the soliton states was studied numerically, using the Beam Propagation Method. Asymmetric couplers with quadratic nonlinearity were also studied. The bifurcation diagrams for the asymmetric couplers were those unfolded from the corresponding diagrams of the symmetric couplers. Novel stable two-soliton bound states due to three-wave interaction were discovered for a quadratically nonlinear waveguide equipped with resonant gratings. Since the coupled optical waveguide systems are controlled by a larger number of parameters than in the corresponding single waveguide, the coupled systems can find a much broader field of applications. This study provides useful background information to support these applications.
|
Page generated in 0.098 seconds